These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
346 related articles for article (PubMed ID: 27378844)
21. Autonomous control of ventilation through closed-loop adaptive respiratory pacing. Siu R; Abbas JJ; Fuller DD; Gomes J; Renaud S; Jung R Sci Rep; 2020 Dec; 10(1):21903. PubMed ID: 33318547 [TBL] [Abstract][Full Text] [Related]
22. Highly efficient neuromorphic learning system of spiking neural network with multi-compartment leaky integrate-and-fire neurons. Gao T; Deng B; Wang J; Yi G Front Neurosci; 2022; 16():929644. PubMed ID: 36248664 [TBL] [Abstract][Full Text] [Related]
23. A Digital Hardware System for Spiking Network of Tactile Afferents. Salimi-Nezhad N; Ilbeigi E; Amiri M; Falotico E; Laschi C Front Neurosci; 2019; 13():1330. PubMed ID: 32009869 [TBL] [Abstract][Full Text] [Related]
24. Reconstruction of a Fully Paralleled Auditory Spiking Neural Network and FPGA Implementation. Deng B; Fan Y; Wang J; Yang S IEEE Trans Biomed Circuits Syst; 2021 Dec; 15(6):1320-1331. PubMed ID: 34699367 [TBL] [Abstract][Full Text] [Related]
25. Real-time field-programmable gate array-based closed-loop deep brain stimulation platform targeting cerebellar circuitry rescues motor deficits in a mouse model of cerebellar ataxia. Kumar G; Zhou Z; Wang Z; Kwan KM; Tin C; Ma CHE CNS Neurosci Ther; 2024 Mar; 30(3):e14638. PubMed ID: 38488445 [TBL] [Abstract][Full Text] [Related]
26. Extending the piezoelectric transducer bandwidth of an optical interferometer by suppressing resonance using a high dimensional IIR filter implemented on an FPGA. Okada M; Serikawa T; Dannatt J; Kobayashi M; Sakaguchi A; Petersen I; Furusawa A Rev Sci Instrum; 2020 May; 91(5):055102. PubMed ID: 32486721 [TBL] [Abstract][Full Text] [Related]
27. Artificial cerebellum on FPGA: realistic real-time cerebellar spiking neural network model capable of real-world adaptive motor control. Shinji Y; Okuno H; Hirata Y Front Neurosci; 2024; 18():1220908. PubMed ID: 38726031 [TBL] [Abstract][Full Text] [Related]
28. A FPGA-Based, Granularity-Variable Neuromorphic Processor and Its Application in a MIMO Real-Time Control System. Zhang Z; Ma C; Zhu R Sensors (Basel); 2017 Aug; 17(9):. PubMed ID: 28832522 [TBL] [Abstract][Full Text] [Related]
29. A dual closed-loop control system for mechanical ventilation. Tehrani F; Rogers M; Lo T; Malinowski T; Afuwape S; Lum M; Grundl B; Terry M J Clin Monit Comput; 2004 Apr; 18(2):111-29. PubMed ID: 15362273 [TBL] [Abstract][Full Text] [Related]
30. On-chip visual perception of motion: a bio-inspired connectionist model on FPGA. Torres-Huitzil C; Girau B; Castellanos-Sánchez C Neural Netw; 2005; 18(5-6):557-65. PubMed ID: 16102939 [TBL] [Abstract][Full Text] [Related]
31. Proprioceptive Feedback through a Neuromorphic Muscle Spindle Model. Vannucci L; Falotico E; Laschi C Front Neurosci; 2017; 11():341. PubMed ID: 28659756 [TBL] [Abstract][Full Text] [Related]
32. Toward Building Hybrid Biological/in silico Neural Networks for Motor Neuroprosthetic Control. Kocaturk M; Gulcur HO; Canbeyli R Front Neurorobot; 2015; 9():8. PubMed ID: 26321943 [TBL] [Abstract][Full Text] [Related]
33. Real-time object tracking based on scale-invariant features employing bio-inspired hardware. Yasukawa S; Okuno H; Ishii K; Yagi T Neural Netw; 2016 Sep; 81():29-38. PubMed ID: 27268260 [TBL] [Abstract][Full Text] [Related]
34. Implementation of a Bio-Inspired Neural Architecture for Autonomous Vehicles on a Multi-FPGA Platform. Elouaret T; Colomer S; De Melo F; Cuperlier N; Romain O; Kessal L; Zuckerman S Sensors (Basel); 2023 May; 23(10):. PubMed ID: 37430545 [TBL] [Abstract][Full Text] [Related]
35. A visually guided collision warning system with a neuromorphic architecture. Okuno H; Yagi T Neural Netw; 2008 Dec; 21(10):1431-8. PubMed ID: 19028077 [TBL] [Abstract][Full Text] [Related]
36. A field-programmable gate array (FPGA)-based data acquisition system for closed-loop experiments. Delgadillo Bonequi I; Stroschein A; Koerner LJ Rev Sci Instrum; 2022 Nov; 93(11):114712. PubMed ID: 36461500 [TBL] [Abstract][Full Text] [Related]
37. Real-time cerebellar neuroprosthetic system based on a spiking neural network model of motor learning. Xu T; Xiao N; Zhai X; Kwan Chan P; Tin C J Neural Eng; 2018 Feb; 15(1):016021. PubMed ID: 29115280 [TBL] [Abstract][Full Text] [Related]
38. Design of a Sleep Modulation System with FPGA-Accelerated Deep Learning for Closed-loop Stage-Specific In-Phase Auditory Stimulation. Sun M; Zhou A; Yang N; Xu Y; Hou Y; Richardson AG; Liu X IEEE Int Symp Circuits Syst Proc; 2023 May; 2023():. PubMed ID: 38623583 [TBL] [Abstract][Full Text] [Related]
39. Towards a Bio-Inspired Real-Time Neuromorphic Cerebellum. Bogdan PA; Marcinnò B; Casellato C; Casali S; Rowley AGD; Hopkins M; Leporati F; D'Angelo E; Rhodes O Front Cell Neurosci; 2021; 15():622870. PubMed ID: 34135732 [TBL] [Abstract][Full Text] [Related]
40. An FPGA hardware/software co-design towards evolvable spiking neural networks for robotics application. Johnston SP; Prasad G; Maguire L; McGinnity TM Int J Neural Syst; 2010 Dec; 20(6):447-61. PubMed ID: 21117269 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]