These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 27378865)

  • 1. 512-Channel and 13-Region Simultaneous Recordings Coupled with Optogenetic Manipulation in Freely Behaving Mice.
    Xie K; Fox GE; Liu J; Tsien JZ
    Front Syst Neurosci; 2016; 10():48. PubMed ID: 27378865
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mesotrode chronic simultaneous mesoscale cortical imaging and subcortical or peripheral nerve spiking activity recording in mice.
    Xiao D; Yan Y; Murphy TH
    Elife; 2023 Nov; 12():. PubMed ID: 37962180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tetrode Recording from the Hippocampus of Behaving Mice Coupled with Four-Point-Irradiation Closed-Loop Optogenetics: A Technique to Study the Contribution of Hippocampal SWR Events to Learning.
    Rangel Guerrero DK; Donnett JG; Csicsvari J; Kovács KA
    eNeuro; 2018; 5(4):. PubMed ID: 30225344
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hybrid Microdrive System with Recoverable Opto-Silicon Probe and Tetrode for Dual-Site High Density Recording in Freely Moving Mice.
    Osanai H; Kitamura T; Yamamoto J
    J Vis Exp; 2019 Aug; (150):. PubMed ID: 31449259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optogenetic Mapping of Functional Connectivity in Freely Moving Mice via Insertable Wrapping Electrode Array Beneath the Skull.
    Park AH; Lee SH; Lee C; Kim J; Lee HE; Paik SB; Lee KJ; Kim D
    ACS Nano; 2016 Feb; 10(2):2791-802. PubMed ID: 26735496
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proximal and distal modulation of neural activity by spatially confined optogenetic activation with an integrated high-density optoelectrode.
    Libbrecht S; Hoffman L; Welkenhuysen M; Van den Haute C; Baekelandt V; Braeken D; Haesler S
    J Neurophysiol; 2018 Jul; 120(1):149-161. PubMed ID: 29589813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pan-cortical cellular imaging in freely behaving mice using a miniaturized micro-camera array microscope (mini-MCAM).
    Hu J; Cherkkil A; Surinach DA; Oladepo I; Hossain R; Fausner S; Saxena K; Ko E; Peters R; Feldkamp M; Konda PC; Pathak V; Horstmeyer R; Kodandaramaiah SB
    bioRxiv; 2024 Jul; ():. PubMed ID: 39005454
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optetrode: a multichannel readout for optogenetic control in freely moving mice.
    Anikeeva P; Andalman AS; Witten I; Warden M; Goshen I; Grosenick L; Gunaydin LA; Frank LM; Deisseroth K
    Nat Neurosci; 2011 Dec; 15(1):163-70. PubMed ID: 22138641
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optogenetic Entrainment of Hippocampal Theta Oscillations in Behaving Mice.
    Bender F; Korotkova T; Ponomarenko A
    J Vis Exp; 2018 Jun; (136):. PubMed ID: 30010632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HectoSTAR μLED Optoelectrodes for Large-Scale, High-Precision In Vivo Opto-Electrophysiology.
    Vöröslakos M; Kim K; Slager N; Ko E; Oh S; Parizi SS; Hendrix B; Seymour JP; Wise KD; Buzsáki G; Fernández-Ruiz A; Yoon E
    Adv Sci (Weinh); 2022 Jun; 9(18):e2105414. PubMed ID: 35451232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multi-area recordings and optogenetics in the awake, behaving marmoset.
    Jendritza P; Klein FJ; Fries P
    Nat Commun; 2023 Feb; 14(1):577. PubMed ID: 36732525
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micro-endoscopic system for functional assessment of neural circuits in deep brain regions: Simultaneous optical and electrical recordings of auditory responses in mouse's inferior colliculus.
    Yashiro H; Nakahara I; Funabiki K; Riquimaroux H
    Neurosci Res; 2017 Jun; 119():61-69. PubMed ID: 28077288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unmasking local activity within local field potentials (LFPs) by removing distal electrical signals using independent component analysis.
    Whitmore NW; Lin SC
    Neuroimage; 2016 May; 132():79-92. PubMed ID: 26899209
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cortical afferents of the nucleus accumbens in the cat, studied with anterograde and retrograde transport techniques.
    Groenewegen HJ; Room P; Witter MP; Lohman AH
    Neuroscience; 1982 Apr; 7(4):977-96. PubMed ID: 7099426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decoding of cortex-wide brain activity from local recordings of neural potentials.
    Liu X; Ren C; Huang Z; Wilson M; Kim JH; Lu Y; Ramezani M; Komiyama T; Kuzum D
    J Neural Eng; 2021 Nov; 18(6):. PubMed ID: 34706356
    [No Abstract]   [Full Text] [Related]  

  • 16. A Visual-Cue-Dependent Memory Circuit for Place Navigation.
    Qin H; Fu L; Hu B; Liao X; Lu J; He W; Liang S; Zhang K; Li R; Yao J; Yan J; Chen H; Jia H; Zott B; Konnerth A; Chen X
    Neuron; 2018 Jul; 99(1):47-55.e4. PubMed ID: 29909996
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 18.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 11.