These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 27378890)

  • 1. Comparing the Neural Correlates of Conscious and Unconscious Conflict Control in a Masked Stroop Priming Task.
    Jiang J; Bailey K; Xiang L; Zhang L; Zhang Q
    Front Hum Neurosci; 2016; 10():297. PubMed ID: 27378890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The neural mechanisms of semantic and response conflicts: an fMRI study of practice-related effects in the Stroop task.
    Chen Z; Lei X; Ding C; Li H; Chen A
    Neuroimage; 2013 Feb; 66():577-84. PubMed ID: 23103691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Revealing robust neural correlates of conscious and unconscious visual processing: Activation likelihood estimation meta-analyses.
    MacLean MW; Hadid V; Spreng RN; Lepore F
    Neuroimage; 2023 Jun; 273():120088. PubMed ID: 37030413
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The neural correlates and functional integration of cognitive control in a Stroop task.
    Egner T; Hirsch J
    Neuroimage; 2005 Jan; 24(2):539-47. PubMed ID: 15627596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparing conscious and unconscious conflict adaptation.
    Desender K; Van Lierde E; Van den Bussche E
    PLoS One; 2013; 8(2):e55976. PubMed ID: 23405242
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Midfrontal Theta and Posterior Parietal Alpha Band Oscillations Support Conflict Resolution in a Masked Affective Priming Task.
    Jiang J; Bailey K; Xiao X
    Front Hum Neurosci; 2018; 12():175. PubMed ID: 29773984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conscious and unconscious processes in cognitive control: a theoretical perspective and a novel empirical approach.
    Horga G; Maia TV
    Front Hum Neurosci; 2012; 6():199. PubMed ID: 23055959
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Suppressing emotions impairs subsequent stroop performance and reduces prefrontal brain activation.
    Friese M; Binder J; Luechinger R; Boesiger P; Rasch B
    PLoS One; 2013; 8(4):e60385. PubMed ID: 23565239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurocognitive mechanisms of affective conflict adaptation: An event related fMRI study.
    Kar BR; Nigam R; Pammi VSC; Guleria A; Srinivasan N
    Prog Brain Res; 2019; 247():149-167. PubMed ID: 31196432
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Representational Similarity Analysis of Cognitive Control during Color-Word Stroop.
    Freund MC; Bugg JM; Braver TS
    J Neurosci; 2021 Sep; 41(35):7388-7402. PubMed ID: 34162756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-generated Unconscious Processing of Loss Linked to Less Severe Grieving.
    Schneck N; Tu T; Bonanno GA; Shear MK; Sajda P; Mann JJ
    Biol Psychiatry Cogn Neurosci Neuroimaging; 2019 Mar; 4(3):271-279. PubMed ID: 30262338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dissociation between unconscious motor response facilitation and conflict in medial frontal areas.
    D'Ostilio K; Garraux G
    Eur J Neurosci; 2012 Jan; 35(2):332-40. PubMed ID: 22250818
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural Integrity in the Genu of Corpus Callosum Predicts Conflict-induced Functional Connectivity Between Medial Frontal Cortex and Right Posterior Parietal Cortex.
    Liu P; Yu Y; Gao S; Sun J; Yang X; Liu P; Qin W
    Neuroscience; 2017 Dec; 366():162-171. PubMed ID: 29080715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiple cognitive control mechanisms associated with the nature of conflict.
    Kim C; Chung C; Kim J
    Neurosci Lett; 2010 Jun; 476(3):156-60. PubMed ID: 20399838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decomposing interference during Stroop performance into different conflict factors: an event-related fMRI study.
    Melcher T; Gruber O
    Cortex; 2009 Feb; 45(2):189-200. PubMed ID: 19150520
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Color Stroop and negative priming in schizophrenia: an fMRI study.
    Ungar L; Nestor PG; Niznikiewicz MA; Wible CG; Kubicki M
    Psychiatry Res; 2010 Jan; 181(1):24-9. PubMed ID: 19963356
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Right Inferior Frontal Gyrus Plays an Important Role in Unconscious Information Processing: Activation Likelihood Estimation Analysis Based on Functional Magnetic Resonance Imaging.
    Shi J; Huang H; Jiang R; Mao X; Huang Q; Li A
    Front Neurosci; 2022; 16():781099. PubMed ID: 35401077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Neural substrates of attentive listening assessed with a novel auditory Stroop task.
    Christensen TA; Lockwood JL; Almryde KR; Plante E
    Front Hum Neurosci; 2011; 4():236. PubMed ID: 21258643
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of high-frequency rTMS of the left dorsolateral prefrontal cortex on the resolution of response, semantic and task conflict in the colour-word Stroop task.
    Parris BA; Wadsley MG; Arabaci G; Hasshim N; Augustinova M; Ferrand L
    Brain Struct Funct; 2021 May; 226(4):1241-1252. PubMed ID: 33608822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrophysiological correlates of block-wise strategic adaptations to consciously and unconsciously triggered conflict.
    Jiang J; van Gaal S; Bailey K; Chen A; Zhang Q
    Neuropsychologia; 2013 Nov; 51(13):2791-8. PubMed ID: 24055539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.