BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 27378931)

  • 1. Cancer Markers Selection Using Network-Based Cox Regression: A Methodological and Computational Practice.
    Iuliano A; Occhipinti A; Angelini C; De Feis I; Lió P
    Front Physiol; 2016; 7():208. PubMed ID: 27378931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Variational Autoencoders for Cancer Data Integration: Design Principles and Computational Practice.
    Simidjievski N; Bodnar C; Tariq I; Scherer P; Andres Terre H; Shams Z; Jamnik M; Liò P
    Front Genet; 2019; 10():1205. PubMed ID: 31921281
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting censored survival data based on the interactions between meta-dimensional omics data in breast cancer.
    Kim D; Li R; Dudek SM; Ritchie MD
    J Biomed Inform; 2015 Aug; 56():220-8. PubMed ID: 26048077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigating the utility of clinical outcome-guided mutual information network in network-based Cox regression.
    Jeong HH; Kim S; Wee K; Sohn KA
    BMC Syst Biol; 2015; 9 Suppl 1(Suppl 1):S8. PubMed ID: 25708115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Network regularised Cox regression and multiplex network models to predict disease comorbidities and survival of cancer.
    Xu H; Moni MA; Liò P
    Comput Biol Chem; 2015 Dec; 59 Pt B():15-31. PubMed ID: 26611766
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multi-omics facilitated variable selection in Cox-regression model for cancer prognosis prediction.
    Liu C; Wang X; Genchev GZ; Lu H
    Methods; 2017 Jul; 124():100-107. PubMed ID: 28627406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. GSNFS: Gene subnetwork biomarker identification of lung cancer expression data.
    Doungpan N; Engchuan W; Chan JH; Meechai A
    BMC Med Genomics; 2016 Dec; 9(Suppl 3):70. PubMed ID: 28117655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combining Pathway Identification and Breast Cancer Survival Prediction via Screening-Network Methods.
    Iuliano A; Occhipinti A; Angelini C; De Feis I; Liò P
    Front Genet; 2018; 9():206. PubMed ID: 29963073
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sparse overlapping group lasso for integrative multi-omics analysis.
    Park H; Niida A; Miyano S; Imoto S
    J Comput Biol; 2015 Feb; 22(2):73-84. PubMed ID: 25629319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporating prior biological knowledge for network-based differential gene expression analysis using differentially weighted graphical LASSO.
    Zuo Y; Cui Y; Yu G; Li R; Ressom HW
    BMC Bioinformatics; 2017 Feb; 18(1):99. PubMed ID: 28187708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A plea for taking all available clinical information into account when assessing the predictive value of omics data.
    Volkmann A; De Bin R; Sauerbrei W; Boulesteix AL
    BMC Med Res Methodol; 2019 Jul; 19(1):162. PubMed ID: 31340753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. EMT network-based feature selection improves prognosis prediction in lung adenocarcinoma.
    Shao B; Bjaanæs MM; Helland Å; Schütte C; Conrad T
    PLoS One; 2019; 14(1):e0204186. PubMed ID: 30703089
    [TBL] [Abstract][Full Text] [Related]  

  • 13. DegreeCox - a network-based regularization method for survival analysis.
    Veríssimo A; Oliveira AL; Sagot MF; Vinga S
    BMC Bioinformatics; 2016 Dec; 17(Suppl 16):449. PubMed ID: 28105908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Min-redundancy and max-relevance multi-view feature selection for predicting ovarian cancer survival using multi-omics data.
    El-Manzalawy Y; Hsieh TY; Shivakumar M; Kim D; Honavar V
    BMC Med Genomics; 2018 Sep; 11(Suppl 3):71. PubMed ID: 30255801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. BMRF-MI: integrative identification of protein interaction network by modeling the gene dependency.
    Shi X; Wang X; Shajahan A; Hilakivi-Clarke L; Clarke R; Xuan J
    BMC Genomics; 2015; 16 Suppl 7(Suppl 7):S10. PubMed ID: 26099273
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NETWORK-REGULARIZED HIGH-DIMENSIONAL COX REGRESSION FOR ANALYSIS OF GENOMIC DATA.
    Sun H; Lin W; Feng R; Li H
    Stat Sin; 2014 Jul; 24(3):1433-1459. PubMed ID: 26316678
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction and interpretation of cancer survival using graph convolution neural networks.
    Ramirez R; Chiu YC; Zhang S; Ramirez J; Chen Y; Huang Y; Jin YF
    Methods; 2021 Aug; 192():120-130. PubMed ID: 33484826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Integrated Model Based on a Six-Gene Signature Predicts Overall Survival in Patients With Hepatocellular Carcinoma.
    Li W; Lu J; Ma Z; Zhao J; Liu J
    Front Genet; 2019; 10():1323. PubMed ID: 32010188
    [No Abstract]   [Full Text] [Related]  

  • 19. Combinatorial Ranking of Gene Sets to Predict Disease Relapse: The Retinoic Acid Pathway in Early Prostate Cancer.
    Nim HT; Furtado MB; Ramialison M; Boyd SE
    Front Oncol; 2017; 7():30. PubMed ID: 28361034
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integration of multi-omics data to mine cancer-related gene modules.
    Li P; Guo M; Sun B
    J Bioinform Comput Biol; 2019 Dec; 17(6):1950038. PubMed ID: 32019413
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.