These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 27378942)

  • 41. Impact of 5 Days of Sprint Training in Hypoxia on Performance and Muscle Energy Substances.
    Kasai N; Kojima C; Sumi D; Takahashi H; Goto K; Suzuki Y
    Int J Sports Med; 2017 Nov; 38(13):983-991. PubMed ID: 28965346
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Distinct Effects of Repeated-Sprint Training in Normobaric Hypoxia and β-Alanine Supplementation.
    Wang R; Fukuda DH; Hoffman JR; La Monica MB; Starling TM; Stout JR; Kang J; Hu Y
    J Am Coll Nutr; 2019 Feb; 38(2):149-161. PubMed ID: 30277420
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Intermittent hypoxic training improves anaerobic performance in competitive swimmers when implemented into a direct competition mesocycle.
    Czuba M; Wilk R; Karpiński J; Chalimoniuk M; Zajac A; Langfort J
    PLoS One; 2017; 12(8):e0180380. PubMed ID: 28763443
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Augmented muscle glycogen utilization following a single session of sprint training in hypoxia.
    Kasai N; Tanji F; Ishibashi A; Ohnuma H; Takahashi H; Goto K; Suzuki Y
    Eur J Appl Physiol; 2021 Nov; 121(11):2981-2991. PubMed ID: 34228222
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Sprint interval and moderate-intensity continuous training have equal benefits on aerobic capacity, insulin sensitivity, muscle capillarisation and endothelial eNOS/NAD(P)Hoxidase protein ratio in obese men.
    Cocks M; Shaw CS; Shepherd SO; Fisher JP; Ranasinghe A; Barker TA; Wagenmakers AJ
    J Physiol; 2016 Apr; 594(8):2307-21. PubMed ID: 25645978
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Sprint interval and moderate-intensity cycling training differentially affect adiposity and aerobic capacity in overweight young-adult women.
    Higgins S; Fedewa MV; Hathaway ED; Schmidt MD; Evans EM
    Appl Physiol Nutr Metab; 2016 Nov; 41(11):1177-1183. PubMed ID: 27806634
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of tapering after a period of high-volume sprint interval training on running performance and muscular adaptations in moderately trained runners.
    Skovgaard C; Almquist NW; Kvorning T; Christensen PM; Bangsbo J
    J Appl Physiol (1985); 2018 Feb; 124(2):259-267. PubMed ID: 28935825
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Exercise Performance, Muscle Oxygen Extraction and Blood Cell Mitochondrial Respiration after Repeated-Sprint and Sprint Interval Training in Hypoxia: A Pilot Study.
    Gatterer H; Menz V; Salazar-Martinez E; Sumbalova Z; Garcia-Souza LF; Velika B; Gnaiger E; Burtscher M
    J Sports Sci Med; 2018 Sep; 17(3):339-347. PubMed ID: 30116106
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Improving acceleration and repeated sprint ability in well-trained adolescent handball players: speed versus sprint interval training.
    Buchheit M; Mendez-Villanueva A; Quod M; Quesnel T; Ahmaidi S
    Int J Sports Physiol Perform; 2010 Jun; 5(2):152-64. PubMed ID: 20625188
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Physiological Factors Associated With Declining Repeated Sprint Performance in Hypoxia.
    Gatterer H; Menz V; Untersteiner C; Klarod K; Burtscher M
    J Strength Cond Res; 2019 Jan; 33(1):211-216. PubMed ID: 28277432
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Exercise training comprising of single 20-s cycle sprints does not provide a sufficient stimulus for improving maximal aerobic capacity in sedentary individuals.
    Songsorn P; Lambeth-Mansell A; Mair JL; Haggett M; Fitzpatrick BL; Ruffino J; Holliday A; Metcalfe RS; Vollaard NB
    Eur J Appl Physiol; 2016 Aug; 116(8):1511-7. PubMed ID: 27270706
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Sprint exercise snacks: a novel approach to increase aerobic fitness.
    Little JP; Langley J; Lee M; Myette-Côté E; Jackson G; Durrer C; Gibala MJ; Jung ME
    Eur J Appl Physiol; 2019 May; 119(5):1203-1212. PubMed ID: 30847639
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The Physiological Mechanisms of Performance Enhancement with Sprint Interval Training Differ between the Upper and Lower Extremities in Humans.
    Zinner C; Morales-Alamo D; Ørtenblad N; Larsen FJ; Schiffer TA; Willis SJ; Gelabert-Rebato M; Perez-Valera M; Boushel R; Calbet JA; Holmberg HC
    Front Physiol; 2016; 7():426. PubMed ID: 27746738
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Effects of intermittent hyperbaric exposure on endurance and interval exercise performance in well-trained mice.
    Suzuki J
    Exp Physiol; 2019 Jan; 104(1):112-125. PubMed ID: 30457682
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effects of intermittent hypoxic training on amino and fatty acid oxidative combustion in human permeabilized muscle fibers.
    Roels B; Thomas C; Bentley DJ; Mercier J; Hayot M; Millet G
    J Appl Physiol (1985); 2007 Jan; 102(1):79-86. PubMed ID: 16990498
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Hypoxic training: effect on mitochondrial function and aerobic performance in hypoxia.
    Robach P; Bonne T; Flück D; Bürgi S; Toigo M; Jacobs RA; Lundby C
    Med Sci Sports Exerc; 2014 Oct; 46(10):1936-45. PubMed ID: 24674976
    [TBL] [Abstract][Full Text] [Related]  

  • 57. No effect of dietary nitrate supplementation on endurance training in hypoxia.
    Puype J; Ramaekers M; Van Thienen R; Deldicque L; Hespel P
    Scand J Med Sci Sports; 2015 Apr; 25(2):234-41. PubMed ID: 24646076
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of High-Intensity Interval Training vs. Sprint Interval Training on Anthropometric Measures and Cardiorespiratory Fitness in Healthy Young Women.
    Naves JPA; Viana RB; Rebelo ACS; de Lira CAB; Pimentel GD; Lobo PCB; de Oliveira JC; Ramirez-Campillo R; Gentil P
    Front Physiol; 2018; 9():1738. PubMed ID: 30568598
    [No Abstract]   [Full Text] [Related]  

  • 59. Neuromuscular adaptations to sprint interval training and the effect of mammalian omega-3 fatty acid supplementation.
    Lewis EJH; Stucky F; Radonic PW; Metherel AH; Wolever TMS; Wells GD
    Eur J Appl Physiol; 2017 Mar; 117(3):469-482. PubMed ID: 28160084
    [TBL] [Abstract][Full Text] [Related]  

  • 60. No improvement of repeated-sprint performance with dietary nitrate.
    Martin K; Smee D; Thompson KG; Rattray B
    Int J Sports Physiol Perform; 2014 Sep; 9(5):845-50. PubMed ID: 24436354
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.