These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
86 related articles for article (PubMed ID: 27379114)
1. Elevated CO2 Atmosphere Minimizes the Effect of Drought on the Cerrado Species Chrysolaena obovata. Oliveira VF; Silva EA; Carvalho MA Front Plant Sci; 2016; 7():810. PubMed ID: 27379114 [TBL] [Abstract][Full Text] [Related]
2. Effects of elevated CO2 concentration and water deficit on fructan metabolism in Viguiera discolor Baker. Oliveira VF; Silva EA; Zaidan LB; Carvalho MA Plant Biol (Stuttg); 2013 May; 15(3):471-82. PubMed ID: 22882384 [TBL] [Abstract][Full Text] [Related]
3. Structural and metabolic changes in rhizophores of the Cerrado species Chrysolaena obovata (Less.) Dematt. as influenced by drought and re-watering. Garcia PM; Hayashi AH; Silva EA; Figueiredo-Ribeiro Rde C; Carvalho MA Front Plant Sci; 2015; 6():721. PubMed ID: 26442035 [TBL] [Abstract][Full Text] [Related]
4. Endogenous hormone concentrations correlate with fructan metabolism throughout the phenological cycle in Chrysolaena obovata. Rigui AP; Gaspar M; Oliveira VF; Purgatto E; Carvalho MA Ann Bot; 2015 Jun; 115(7):1163-75. PubMed ID: 25921788 [TBL] [Abstract][Full Text] [Related]
5. Effects of different carbohydrate sources on fructan metabolism in plants of Chrysolaena obovata grown in vitro. Trevisan F; Oliveira VF; Carvalho MA; Gaspar M Front Plant Sci; 2015; 6():681. PubMed ID: 26442003 [TBL] [Abstract][Full Text] [Related]
6. Effect of drought and re-watering on fructan metabolism in Vernonia herbacea (Vell.) Rusby. Garcia PM; Asega AF; Silva EA; Carvalho MA Plant Physiol Biochem; 2011 Jun; 49(6):664-70. PubMed ID: 21531568 [TBL] [Abstract][Full Text] [Related]
7. Responses of woody Cerrado species to rising atmospheric CO Souza JP; Melo NMJ; Pereira EG; Halfeld AD; Gomes IN; Prado CHBA Funct Plant Biol; 2016 Dec; 43(12):1183-1193. PubMed ID: 32480537 [TBL] [Abstract][Full Text] [Related]
8. Elevated temperature and CO2 cause differential growth stimulation and drought survival responses in eucalypt species from contrasting habitats. Apgaua DMG; Tng DYP; Forbes SJ; Ishida YF; Vogado NO; Cernusak LA; Laurance SGW Tree Physiol; 2019 Dec; 39(11):1806-1820. PubMed ID: 31768554 [TBL] [Abstract][Full Text] [Related]
9. The type of competition modulates the ecophysiological response of grassland species to elevated CO2 and drought. Miranda-Apodaca J; Pérez-López U; Lacuesta M; Mena-Petite A; Muñoz-Rueda A Plant Biol (Stuttg); 2015 Mar; 17(2):298-310. PubMed ID: 25296749 [TBL] [Abstract][Full Text] [Related]
10. Industrial-age changes in atmospheric [CO2] and temperature differentially alter responses of faster- and slower-growing Eucalyptus seedlings to short-term drought. Lewis JD; Smith RA; Ghannoum O; Logan BA; Phillips NG; Tissue DT Tree Physiol; 2013 May; 33(5):475-88. PubMed ID: 23677118 [TBL] [Abstract][Full Text] [Related]
11. Plant water relations at elevated CO2 -- implications for water-limited environments. Wullschleger SD; Tschaplinski TJ; Norby RJ Plant Cell Environ; 2002 Feb; 25(2):319-331. PubMed ID: 11841673 [TBL] [Abstract][Full Text] [Related]
12. Seasonal changes of fructans in dimorphic roots of Ichthyothere terminalis (Spreng.) Blake (Asteraceae) growing in Cerrado. de Almeida LV; Ferri PH; Seraphin JC; de Moraes MG Sci Total Environ; 2017 Nov; 598():404-412. PubMed ID: 28448932 [TBL] [Abstract][Full Text] [Related]
13. Gas exchange, biomass, whole-plant water-use efficiency and water uptake of peach (Prunus persica) seedlings in response to elevated carbon dioxide concentration and water availability. Centritto M; Lucas ME; Jarvis PG Tree Physiol; 2002 Jul; 22(10):699-706. PubMed ID: 12091151 [TBL] [Abstract][Full Text] [Related]
14. Rising CO Faralli M; Grove IG; Hare MC; Kettlewell PS; Fiorani F Plant Cell Environ; 2017 Feb; 40(2):317-325. PubMed ID: 27859348 [TBL] [Abstract][Full Text] [Related]
15. Drought responses of two gymnosperm species with contrasting stomatal regulation strategies under elevated [CO2] and temperature. Duan H; O'Grady AP; Duursma RA; Choat B; Huang G; Smith RA; Jiang Y; Tissue DT Tree Physiol; 2015 Jul; 35(7):756-70. PubMed ID: 26063706 [TBL] [Abstract][Full Text] [Related]
16. [Eco-physiological investigations on wild and cultivated plants in the Negev Desert : III. Daily courses of net photosynthesis and transpiration at the end of the dry period]. Schulze ED; Lange OL; Koch W Oecologia; 1972 Dec; 9(4):317-340. PubMed ID: 28313070 [TBL] [Abstract][Full Text] [Related]
17. [Effects of drought stress, high temperature and elevated CO2 concentration on the growth of winter wheat]. Si FY; Qiao YZ; Jiang JW; Dong BD; Shi CH; Liu MY Ying Yong Sheng Tai Xue Bao; 2014 Sep; 25(9):2605-12. PubMed ID: 25757312 [TBL] [Abstract][Full Text] [Related]
18. Limitations to leaf photosynthesis in field-grown grapevine under drought - metabolic and modelling approaches. Maroco JP; Rodrigues ML; Lopes C; Chaves MM Funct Plant Biol; 2002 Apr; 29(4):451-459. PubMed ID: 32689490 [TBL] [Abstract][Full Text] [Related]
19. Interactive effects on CO2, drought, and ultraviolet-B radiation on maize growth and development. Wijewardana C; Henry WB; Gao W; Reddy KR J Photochem Photobiol B; 2016 Jul; 160():198-209. PubMed ID: 27113447 [TBL] [Abstract][Full Text] [Related]