BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 27379505)

  • 1. Age-dependent modulation of fasting and long-term dietary restriction on acetylcholinesterase in non-neuronal tissues of mice.
    Suchiang K; Sharma R
    Mol Cell Biochem; 2016 Aug; 419(1-2):135-45. PubMed ID: 27379505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dietary restriction regulates brain acetylcholinesterase in female mice as a function of age.
    Suchiang K; Sharma R
    Biogerontology; 2011 Dec; 12(6):581-9. PubMed ID: 21870149
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Age- and Tissue-Dependent Modulation of IGF-1/PI3K/Akt Protein Expression by Dietary Restriction in Mice.
    Hadem IK; Sharma R
    Horm Metab Res; 2016 Mar; 48(3):201-6. PubMed ID: 26372898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Near-infrared fluorescent probe for evaluating the acetylcholinesterase effect in the aging process and dietary restriction via fluorescence imaging.
    He N; Yu L; Xu M; Huang Y; Wang X; Chen L; Yue S
    J Mater Chem B; 2021 Mar; 9(11):2623-2630. PubMed ID: 33666613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Late onset of dietary restriction reverses age-related decline of malate-aspartate shuttle enzymes in the liver and kidney of mice.
    Goyary D; Sharma R
    Biogerontology; 2008 Feb; 9(1):11-8. PubMed ID: 17932783
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of insulin induced hypoglycemia on acetylcholinesterase and Na+, K(+)-ATPase activity of rat heart, liver and kidney.
    Arora SK; Kaur G
    Biochem Mol Biol Int; 1993 Nov; 31(3):413-20. PubMed ID: 8118415
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acetylcholinesterase (AChE) inhibition aggravates fasting-induced triglyceride accumulation in the mouse liver.
    Yokota S; Nakamura K; Ando M; Kamei H; Hakuno F; Takahashi S; Shibata S
    FEBS Open Bio; 2014; 4():905-14. PubMed ID: 25383314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Middle age onset short-term intermittent fasting dietary restriction prevents brain function impairments in male Wistar rats.
    Singh R; Manchanda S; Kaur T; Kumar S; Lakhanpal D; Lakhman SS; Kaur G
    Biogerontology; 2015 Dec; 16(6):775-88. PubMed ID: 26318578
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age-dependent increased expression and activity of inorganic pyrophosphatase in the liver of male mice and its further enhancement with short- and long-term dietary restriction.
    Kharbhih WJ; Sharma R
    Biogerontology; 2014 Feb; 15(1):81-6. PubMed ID: 24271717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Acetylcholinesterase activity of rat brain and heart in starvation and protein restriction.
    Venkataraman BV; Shetty PS; Joseph T; Stephen PM
    Indian J Physiol Pharmacol; 1985; 29(2):123-5. PubMed ID: 4093194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Choline availability and acetylcholine synthesis in the hippocampus of acetylcholinesterase-deficient mice.
    Hartmann J; Kiewert C; Duysen EG; Lockridge O; Klein J
    Neurochem Int; 2008 May; 52(6):972-8. PubMed ID: 18023504
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term dietary restriction up-regulates activity and expression of renal arginase II in aging mice.
    Majaw T; Sharma R
    J Biosci; 2017 Jun; 42(2):275-283. PubMed ID: 28569251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postnatal diisopropylfluorophosphate enhances conditioned vigilance in adult BALB/c and C57BL/6 mice and alters expression of acetylcholinesterase splice variants.
    Oriel S; Dori A; Kofman O
    Behav Pharmacol; 2014 Oct; 25(7):661-72. PubMed ID: 25171079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Postnatal changes in the activities of acetylcholinesterase and butyrylcholinesterase in rat heart atria.
    Slavíková J; Tucek S
    Physiol Bohemoslov; 1986; 35(1):11-6. PubMed ID: 2939475
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of age and dietary restriction on the tissue-specific metabolome of Drosophila.
    Laye MJ; Tran V; Jones DP; Kapahi P; Promislow DE
    Aging Cell; 2015 Oct; 14(5):797-808. PubMed ID: 26085309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Butyrylcholinesterase and the control of synaptic responses in acetylcholinesterase knockout mice.
    Girard E; Bernard V; Minic J; Chatonnet A; Krejci E; Molgó J
    Life Sci; 2007 May; 80(24-25):2380-5. PubMed ID: 17467011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Short-term dietary restriction and fasting precondition against ischemia reperfusion injury in mice.
    Mitchell JR; Verweij M; Brand K; van de Ven M; Goemaere N; van den Engel S; Chu T; Forrer F; Müller C; de Jong M; van IJcken W; IJzermans JN; Hoeijmakers JH; de Bruin RW
    Aging Cell; 2010 Feb; 9(1):40-53. PubMed ID: 19878145
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolic adaptations to fasting and chronic caloric restriction in heart, muscle, and liver do not include changes in AMPK activity.
    Gonzalez AA; Kumar R; Mulligan JD; Davis AJ; Weindruch R; Saupe KW
    Am J Physiol Endocrinol Metab; 2004 Nov; 287(5):E1032-7. PubMed ID: 15251868
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the in vitro sensitivity of rat acetylcholinesterase to chlorpyrifos-oxon: what do tissue IC50 values represent?
    Mortensen SR; Brimijoin S; Hooper MJ; Padilla S
    Toxicol Appl Pharmacol; 1998 Jan; 148(1):46-9. PubMed ID: 9465262
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Most acetylcholinesterase activity of non-nervous tissues and cells arises from the AChE-H transcript.
    Montenegro MF; Nieto-Cerón S; Cabezas-Herrera J; Muñoz-Delgado E; Campoy FJ; Vidal CJ
    J Mol Neurosci; 2014 Jul; 53(3):429-35. PubMed ID: 24242952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.