These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 27379630)

  • 21. Induction of rhythmic transient depolarizations associated with waxing and waning of slow wave activity in intestinal smooth muscle.
    Pawelka AJ; Huizinga JD
    Am J Physiol Gastrointest Liver Physiol; 2015 Mar; 308(5):G427-33. PubMed ID: 25540235
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gut peristalsis is governed by a multitude of cooperating mechanisms.
    Huizinga JD; Lammers WJ
    Am J Physiol Gastrointest Liver Physiol; 2009 Jan; 296(1):G1-8. PubMed ID: 18988693
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Effect of Shuwel Decoction on Enteric Nervous System-Interstitial Cells of Cajal-Smooth Muscle Network Structure Injury in Deep Muscle Nerve Plexus of Functional Dyspepsia Rats].
    Guo XA; Liu Y; Wang XJ; Xu Y; Tan HL; Yin J
    Zhongguo Zhong Xi Yi Jie He Za Zhi; 2016 Apr; 36(4):454-9. PubMed ID: 27323619
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mounting evidence against the role of ICC in neurotransmission to smooth muscle in the gut.
    Goyal RK; Chaudhury A
    Am J Physiol Gastrointest Liver Physiol; 2010 Jan; 298(1):G10-3. PubMed ID: 19892937
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of interstitial cells of Cajal in neural control of gastrointestinal smooth muscles.
    Ward SM; Sanders KM; Hirst GD
    Neurogastroenterol Motil; 2004 Apr; 16 Suppl 1():112-7. PubMed ID: 15066015
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Development of the enteric nervous system and its role in intestinal motility during fetal and early postnatal stages.
    Burns AJ; Roberts RR; Bornstein JC; Young HM
    Semin Pediatr Surg; 2009 Nov; 18(4):196-205. PubMed ID: 19782301
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Plasticity of interstitial cells of cajal: a study in the small intestine of adult Guinea pigs.
    Mei F; Han J; Huang Y; Jiang ZY; Xiong CJ; Zhou DS
    Anat Rec (Hoboken); 2009 Jul; 292(7):985-93. PubMed ID: 19548308
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The pacemaker activity of interstitial cells of Cajal and gastric electrical activity.
    Camborová P; Hubka P; Sulková I; Hulín I
    Physiol Res; 2003; 52(3):275-84. PubMed ID: 12790758
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Insights into mechanisms of intestinal segmentation in guinea pigs: a combined computational modeling and in vitro study.
    Chambers JD; Bornstein JC; Thomas EA
    Am J Physiol Gastrointest Liver Physiol; 2008 Sep; 295(3):G534-41. PubMed ID: 18599585
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Calcium imaging of gut activity.
    Tack J; Smith TK
    Neurogastroenterol Motil; 2004 Apr; 16 Suppl 1():86-95. PubMed ID: 15066011
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrical stimulation of gut motility guided by an in silico model.
    Barth BB; Henriquez CS; Grill WM; Shen X
    J Neural Eng; 2017 Dec; 14(6):066010. PubMed ID: 28816177
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatio-Temporal Mapping and the Enteric Nervous System.
    Hennig GW
    Adv Exp Med Biol; 2016; 891():31-42. PubMed ID: 27379632
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enteric motor neurons form synaptic-like junctions with interstitial cells of Cajal in the canine gastric antrum.
    Horiguchi K; Sanders KM; Ward SM
    Cell Tissue Res; 2003 Mar; 311(3):299-313. PubMed ID: 12658438
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effects of mechanical stretch on interstitial cells of Cajal in guinea pig bladder.
    Wang Y; Fang Q; Lu Y; Song B; Li W; Li L
    J Surg Res; 2010 Nov; 164(1):e213-9. PubMed ID: 20828727
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neurally mediated propagating discrete clustered contractions superimposed on myogenic ripples in ex vivo segments of human ileum.
    Kuizenga MH; Sia TC; Dodds KN; Wiklendt L; Arkwright JW; Thomas A; Brookes SJ; Spencer NJ; Wattchow DA; Dinning PG; Costa M
    Am J Physiol Gastrointest Liver Physiol; 2015 Jan; 308(1):G1-G11. PubMed ID: 25394659
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Neurotransmission in lower esophageal sphincter of W/Wv mutant mice.
    Zhang Y; Carmichael SA; Wang XY; Huizinga JD; Paterson WG
    Am J Physiol Gastrointest Liver Physiol; 2010 Jan; 298(1):G14-24. PubMed ID: 19850967
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Roles of M2 and M3 muscarinic receptors in the generation of rhythmic motor activity in mouse small intestine.
    Tanahashi Y; Waki N; Unno T; Matsuyama H; Iino S; Kitazawa T; Yamada M; Komori S
    Neurogastroenterol Motil; 2013 Oct; 25(10):e687-97. PubMed ID: 23889852
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Immunocytochemical demonstration of the gap junction proteins connexin 43 and connexin 45 in the musculature of the rat small intestine.
    Seki K; Komuro T
    Cell Tissue Res; 2001 Dec; 306(3):417-22. PubMed ID: 11735042
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Involvement of intramuscular interstitial cells of Cajal in neuroeffector transmission in the gastrointestinal tract.
    Ward SM; Sanders KM
    J Physiol; 2006 Nov; 576(Pt 3):675-82. PubMed ID: 16973700
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The origin of segmentation motor activity in the intestine.
    Huizinga JD; Chen JH; Zhu YF; Pawelka A; McGinn RJ; Bardakjian BL; Parsons SP; Kunze WA; Wu RY; Bercik P; Khoshdel A; Chen S; Yin S; Zhang Q; Yu Y; Gao Q; Li K; Hu X; Zarate N; Collins P; Pistilli M; Ma J; Zhang R; Chen D
    Nat Commun; 2014; 5():3326. PubMed ID: 24561718
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.