These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 27380143)

  • 21. Correlative cathodoluminescence and near-infrared fluorescence imaging for bridging from nanometer to millimeter scale bioimaging.
    Niioka H; Fukushima S; Ichimiya M; Ashida M; Miyake J; Araki T; Hashimoto M
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i29. PubMed ID: 25359828
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding Plasmonic Properties in Metallic Nanostructures by Correlating Photonic and Electronic Excitations.
    Iberi V; Mirsaleh-Kohan N; Camden JP
    J Phys Chem Lett; 2013 Apr; 4(7):1070-8. PubMed ID: 26282023
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Detection of low phosphorus contents in neurofilaments of squid axons by Image-EELS contrast spectroscopy.
    Door R; Richter K; Martin R
    J Microsc; 1997 Nov; 188(Pt 2):173-81. PubMed ID: 10627190
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of Lithium Ion Battery Materials with Valence Electron Energy-Loss Spectroscopy.
    Castro FC; Dravid VP
    Microsc Microanal; 2018 Jun; 24(3):214-220. PubMed ID: 29877170
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Surface-Enhanced Molecular Electron Energy Loss Spectroscopy.
    Konečná A; Neuman T; Aizpurua J; Hillenbrand R
    ACS Nano; 2018 May; 12(5):4775-4786. PubMed ID: 29641179
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Local electron beam excitation and substrate effect on the plasmonic response of single gold nanostars.
    Das P; Kedia A; Kumar PS; Large N; Chini TK
    Nanotechnology; 2013 Oct; 24(40):405704. PubMed ID: 24029251
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The T-Matrix method in electron energy loss and cathodoluminescence spectroscopy calculations for metallic nano-particles.
    Matyssek C; Schmidt V; Hergert W; Wriedt T
    Ultramicroscopy; 2012 Jun; 117():46-52. PubMed ID: 22659235
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Influence of experimental conditions on localized surface plasmon resonances measurement by electron energy loss spectroscopy.
    Horák M; Šikola T
    Ultramicroscopy; 2020 Sep; 216():113044. PubMed ID: 32535410
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Transition radiation in EELS and cathodoluminescence.
    Stöger-Pollach M; Kachtík L; Miesenberger B; Retzl P
    Ultramicroscopy; 2017 Feb; 173():31-35. PubMed ID: 27907829
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigation of plasmon resonance in metal/dielectric nanocavities for high-efficiency photocatalytic device.
    Rajput NS; Shao-Horn Y; Li XH; Kim SG; Jouiad M
    Phys Chem Chem Phys; 2017 Jul; 19(26):16989-16999. PubMed ID: 28597895
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vortex electron energy loss spectroscopy for near-field mapping of magnetic plasmons.
    Mohammadi Z; Van Vlack CP; Hughes S; Bornemann J; Gordon R
    Opt Express; 2012 Jul; 20(14):15024-34. PubMed ID: 22772198
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Spatially Mapping Energy Transfer from Single Plasmonic Particles to Semiconductor Substrates via STEM/EELS.
    Li G; Cherqui C; Bigelow NW; Duscher G; Straney PJ; Millstone JE; Masiello DJ; Camden JP
    Nano Lett; 2015 May; 15(5):3465-71. PubMed ID: 25845028
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Observing Plasmon Damping Due to Adhesion Layers in Gold Nanostructures Using Electron Energy Loss Spectroscopy.
    Madsen SJ; Esfandyarpour M; Brongersma ML; Sinclair R
    ACS Photonics; 2017 Feb; 4(2):268-274. PubMed ID: 28944259
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Empirical Identification of Uranium Oxides and Fluorides Using Electron Energy-loss Spectroscopy in the Transmission Electron Microscope.
    Rice SB; Bales HH; Roth JR; Whiteside AL
    Microsc Microanal; 1999 Nov; 5(6):437-444. PubMed ID: 10556354
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A TEM and electron energy loss spectroscopy (EELS) investigation of active and inactive silver particles for surface enhanced resonance Raman spectroscopy (SERRS).
    Khan I; Cunningham D; Lazar S; Graham D; Smith WE; McComb DW
    Faraday Discuss; 2006; 132():171-8; discussion 227-47. PubMed ID: 16833115
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Quantification of the boron speciation in alkali borosilicate glasses by electron energy loss spectroscopy.
    Cheng S; Yang G; Zhao Y; Peng M; Skibsted J; Yue Y
    Sci Rep; 2015 Dec; 5():17526. PubMed ID: 26643370
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Numerical simulation of Electron Energy Loss Spectroscopy using a Generalized Multipole Technique.
    Kiewidt L; Karamehmedović M; Matyssek C; Hergert W; Mädler L; Wriedt T
    Ultramicroscopy; 2013 Oct; 133():101-8. PubMed ID: 23969065
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Low-energy cathodoluminescence microscopy for the characterization of nanostructures.
    Dierre B; Yuan X; Sekiguchi T
    Sci Technol Adv Mater; 2010 Aug; 11(4):043001. PubMed ID: 27877341
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electron-energy-loss spectra of plasmonic nanoparticles.
    Hohenester U; Ditlbacher H; Krenn JR
    Phys Rev Lett; 2009 Sep; 103(10):106801. PubMed ID: 19792333
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of single-atom catalysts by EELS and EDX spectroscopy.
    Egerton RF; Watanabe M
    Ultramicroscopy; 2018 Oct; 193():111-117. PubMed ID: 29975874
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.