These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
334 related articles for article (PubMed ID: 27380273)
1. Noncovalent Pi-Pi Stacking at the Carbon-Electrolyte Interface: Controlling the Voltage Window of Electrochemical Supercapacitors. Li M; Westover AS; Carter R; Oakes L; Muralidharan N; Boire TC; Sung HJ; Pint CL ACS Appl Mater Interfaces; 2016 Aug; 8(30):19558-66. PubMed ID: 27380273 [TBL] [Abstract][Full Text] [Related]
2. Investigation of Charge Transfer Kinetics at Carbon/Hydroquinone Interfaces for Redox-Active-Electrolyte Supercapacitors. Park J; Kumar V; Wang X; Lee PS; Kim W ACS Appl Mater Interfaces; 2017 Oct; 9(39):33728-33734. PubMed ID: 28895724 [TBL] [Abstract][Full Text] [Related]
3. Formulation of ionic-liquid electrolyte to expand the voltage window of supercapacitors. Van Aken KL; Beidaghi M; Gogotsi Y Angew Chem Int Ed Engl; 2015 Apr; 54(16):4806-9. PubMed ID: 25788418 [TBL] [Abstract][Full Text] [Related]
4. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
5. Capacitive energy storage in nanostructured carbon-electrolyte systems. Simon P; Gogotsi Y Acc Chem Res; 2013 May; 46(5):1094-103. PubMed ID: 22670843 [TBL] [Abstract][Full Text] [Related]
6. Electrochemical energy storage in montmorillonite K10 clay based composite as supercapacitor using ionic liquid electrolyte. Maiti S; Pramanik A; Chattopadhyay S; De G; Mahanty S J Colloid Interface Sci; 2016 Feb; 464():73-82. PubMed ID: 26609925 [TBL] [Abstract][Full Text] [Related]
7. Electrochemical Characterization of Single Layer Graphene/Electrolyte Interface: Effect of Solvent on the Interfacial Capacitance. Wu YC; Ye J; Jiang G; Ni K; Shu N; Taberna PL; Zhu Y; Simon P Angew Chem Int Ed Engl; 2021 Jun; 60(24):13317-13322. PubMed ID: 33555100 [TBL] [Abstract][Full Text] [Related]
8. Ionic Liquids as Electrolytes for Electrochemical Double-Layer Capacitors: Structures that Optimize Specific Energy. Mousavi MP; Wilson BE; Kashefolgheta S; Anderson EL; He S; Bühlmann P; Stein A ACS Appl Mater Interfaces; 2016 Feb; 8(5):3396-406. PubMed ID: 26771378 [TBL] [Abstract][Full Text] [Related]
9. Atomic Layer Deposition Alumina-Passivated Silicon Nanowires: Probing the Transition from Electrochemical Double-Layer Capacitor to Electrolytic Capacitor. Gaboriau D; Boniface M; Valero A; Aldakov D; Brousse T; Gentile P; Sadki S ACS Appl Mater Interfaces; 2017 Apr; 9(15):13761-13769. PubMed ID: 28333432 [TBL] [Abstract][Full Text] [Related]
10. Aloe vera Derived Activated High-Surface-Area Carbon for Flexible and High-Energy Supercapacitors. Karnan M; Subramani K; Sudhan N; Ilayaraja N; Sathish M ACS Appl Mater Interfaces; 2016 Dec; 8(51):35191-35202. PubMed ID: 27977134 [TBL] [Abstract][Full Text] [Related]
11. The preparation of porous carbon materials derived from bio-protic ionic liquid with application in flexible solid-state supercapacitors. Zhou H; Wu S; Wang H; Li Y; Liu X; Zhou Y J Hazard Mater; 2021 Jan; 402():124023. PubMed ID: 33254832 [TBL] [Abstract][Full Text] [Related]
12. Carbon Capsules of Ionic Liquid for Enhanced Performance of Electrochemical Double-Layer Capacitors. Luo Q; Wei P; Huang Q; Gurkan B; Pentzer EB ACS Appl Mater Interfaces; 2018 May; 10(19):16707-16714. PubMed ID: 29671576 [TBL] [Abstract][Full Text] [Related]
13. Sulfonated graphene oxide and its nanocomposites with electroactive conjugated polymer as effective pseudocapacitor electrode materials. Ehsani A; Kowsari E; Boorboor Ajdari F; Safari R; Mohammad Shiri H J Colloid Interface Sci; 2017 Jul; 497():258-265. PubMed ID: 28285054 [TBL] [Abstract][Full Text] [Related]
14. High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes. Kim TY; Lee HW; Stoller M; Dreyer DR; Bielawski CW; Ruoff RS; Suh KS ACS Nano; 2011 Jan; 5(1):436-42. PubMed ID: 21142183 [TBL] [Abstract][Full Text] [Related]
15. Surface structure at the ionic liquid-electrified metal interface. Baldelli S Acc Chem Res; 2008 Mar; 41(3):421-31. PubMed ID: 18232666 [TBL] [Abstract][Full Text] [Related]
16. Effects of different electrolytes on the electrochemical and dynamic behavior of electric double layer capacitors based on a porous silicon carbide electrode. Kim M; Oh I; Kim J Phys Chem Chem Phys; 2015 Jul; 17(25):16367-74. PubMed ID: 26051533 [TBL] [Abstract][Full Text] [Related]
17. Pulsed Electrochemical Mass Spectrometry for Operando Tracking of Interfacial Processes in Small-Time-Constant Electrochemical Devices such as Supercapacitors. Batisse N; Raymundo-Piñero E ACS Appl Mater Interfaces; 2017 Nov; 9(47):41224-41232. PubMed ID: 29090898 [TBL] [Abstract][Full Text] [Related]
18. Effect of cation on diffusion coefficient of ionic liquids at onion-like carbon electrodes. Van Aken KL; McDonough JK; Li S; Feng G; Chathoth SM; Mamontov E; Fulvio PF; Cummings PT; Dai S; Gogotsi Y J Phys Condens Matter; 2014 Jul; 26(28):284104. PubMed ID: 24920163 [TBL] [Abstract][Full Text] [Related]
19. Effects of Solvent Concentration on the Performance of Ionic-Liquid/Carbon Supercapacitors. Zhang Y; Cummings PT ACS Appl Mater Interfaces; 2019 Nov; 11(45):42680-42689. PubMed ID: 31608619 [TBL] [Abstract][Full Text] [Related]
20. Designing a Novel Polymer Electrolyte for Improving the Electrode/Electrolyte Interface in Flexible All-Solid-State Electrical Double-Layer Capacitors. Wang JA; Lu YT; Lin SC; Wang YS; Ma CM; Hu CC ACS Appl Mater Interfaces; 2018 May; 10(21):17871-17882. PubMed ID: 29745642 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]