These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 27380437)

  • 21. Evaluation of a dual-wavelength size exclusion HPLC method with improved sensitivity to detect protein aggregates and its use to better characterize degradation pathways of an IgG1 monoclonal antibody.
    Bond MD; Panek ME; Zhang Z; Wang D; Mehndiratta P; Zhao H; Gunton K; Ni A; Nedved ML; Burman S; Volkin DB
    J Pharm Sci; 2010 Jun; 99(6):2582-97. PubMed ID: 20039394
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reversible NaCl-induced aggregation of a monoclonal antibody at low pH: Characterization of aggregates and factors affecting aggregation.
    Bickel F; Herold EM; Signes A; Romeijn S; Jiskoot W; Kiefer H
    Eur J Pharm Biopharm; 2016 Oct; 107():310-20. PubMed ID: 27449627
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effects of arginine on photostability and thermal stability of IgG1 monoclonal antibodies.
    Maity H; O'Dell C; Srivastava A; Goldstein J
    Curr Pharm Biotechnol; 2009 Dec; 10(8):761-6. PubMed ID: 19939215
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Aggregation Kinetics for IgG1-Based Monoclonal Antibody Therapeutics.
    Singla A; Bansal R; Joshi V; Rathore AS
    AAPS J; 2016 May; 18(3):689-702. PubMed ID: 26902302
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural characterization of IgG1 mAb aggregates and particles generated under various stress conditions.
    Telikepalli SN; Kumru OS; Kalonia C; Esfandiary R; Joshi SB; Middaugh CR; Volkin DB
    J Pharm Sci; 2014 Mar; 103(3):796-809. PubMed ID: 24452866
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effects of temperature and osmolytes on competing degradation routes for an IgG1 antibody.
    Roberts CJ; Nesta DP; Kim N
    J Pharm Sci; 2013 Oct; 102(10):3556-66. PubMed ID: 23873602
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sorbitol crystallization-induced aggregation in frozen mAb formulations.
    Piedmonte DM; Hair A; Baker P; Brych L; Nagapudi K; Lin H; Cao W; Hershenson S; Ratnaswamy G
    J Pharm Sci; 2015 Feb; 104(2):686-97. PubMed ID: 25219372
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Specific-ion effects on the aggregation mechanisms and protein-protein interactions for anti-streptavidin immunoglobulin gamma-1.
    Barnett GV; Razinkov VI; Kerwin BA; Laue TM; Woodka AH; Butler PD; Perevozchikova T; Roberts CJ
    J Phys Chem B; 2015 May; 119(18):5793-804. PubMed ID: 25885209
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prediction of Protein Aggregation in High Concentration Protein Solutions Utilizing Protein-Protein Interactions Determined by Low Volume Static Light Scattering.
    Hofmann M; Winzer M; Weber C; Gieseler H
    J Pharm Sci; 2016 Jun; 105(6):1819-1828. PubMed ID: 27157445
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Correlating excipient effects on conformational and storage stability of an IgG1 monoclonal antibody with local dynamics as measured by hydrogen/deuterium-exchange mass spectrometry.
    Manikwar P; Majumdar R; Hickey JM; Thakkar SV; Samra HS; Sathish HA; Bishop SM; Middaugh CR; Weis DD; Volkin DB
    J Pharm Sci; 2013 Jul; 102(7):2136-51. PubMed ID: 23620222
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Solubility Challenges in High Concentration Monoclonal Antibody Formulations: Relationship with Amino Acid Sequence and Intermolecular Interactions.
    Pindrus M; Shire SJ; Kelley RF; Demeule B; Wong R; Xu Y; Yadav S
    Mol Pharm; 2015 Nov; 12(11):3896-907. PubMed ID: 26407030
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predicting accelerated aggregation rates for monoclonal antibody formulations, and challenges for low-temperature predictions.
    Brummitt RK; Nesta DP; Roberts CJ
    J Pharm Sci; 2011 Oct; 100(10):4234-43. PubMed ID: 21671226
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A thermal-cycling method for disaggregating monoclonal antibody oligomers.
    Sadavarte RH; Ghosh R
    J Pharm Sci; 2014 Mar; 103(3):870-8. PubMed ID: 24549731
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Experimental Model System to Study pH Shift-Induced Aggregation of Monoclonal Antibodies Under Controlled Conditions.
    Oyetayo OO; Kiefer H
    Pharm Res; 2016 Jun; 33(6):1359-69. PubMed ID: 26928669
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Kinetic analysis of the multistep aggregation mechanism of monoclonal antibodies.
    Nicoud L; Arosio P; Sozo M; Yates A; Norrant E; Morbidelli M
    J Phys Chem B; 2014 Sep; 118(36):10595-606. PubMed ID: 25119992
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Product and process understanding to relate the effect of freezing method on glycation and aggregation of lyophilized monoclonal antibody formulations.
    Awotwe-Otoo D; Agarabi C; Read EK; Lute S; Brorson KA; Khan MA
    Int J Pharm; 2015 Jul; 490(1-2):341-50. PubMed ID: 25835267
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acid-induced aggregation of human monoclonal IgG1 and IgG2: molecular mechanism and the effect of solution composition.
    Hari SB; Lau H; Razinkov VI; Chen S; Latypov RF
    Biochemistry; 2010 Nov; 49(43):9328-38. PubMed ID: 20843079
    [TBL] [Abstract][Full Text] [Related]  

  • 38. First-order nucleation and subsequent growth promote liquid-liquid phase separation of a model IgG1 mAb.
    Tian Z; Xu L; Zhang N; Qian F
    Int J Pharm; 2020 Oct; 588():119681. PubMed ID: 32721563
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Relating Protein-Protein Interactions and Aggregation Rates From Low to High Concentrations.
    Ghosh R; Calero-Rubio C; Saluja A; Roberts CJ
    J Pharm Sci; 2016 Mar; 105(3):1086-96. PubMed ID: 26928400
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The "New Polyethylene Glycol Dilemma": Polyethylene Glycol Impurities and Their Paradox Role in mAb Crystallization.
    Hildebrandt C; Joos L; Saedler R; Winter G
    J Pharm Sci; 2015 Jun; 104(6):1938-1945. PubMed ID: 25808186
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.