These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 2738087)

  • 1. Comparison of coral resorption and bone apposition with two natural corals of different porosities.
    Guillemin G; Meunier A; Dallant P; Christel P; Pouliquen JC; Sedel L
    J Biomed Mater Res; 1989 Jul; 23(7):765-79. PubMed ID: 2738087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microscopic evaluation of the natural coral (Porites spp.) post-implantation in sheep femur.
    Fadilah A; Zuki AB; Loqman MY; Zamri-Saad M; Al-Salihi KA; Norimah Y; Asnah H
    Med J Malaysia; 2004 May; 59 Suppl B():127-8. PubMed ID: 15468851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Natural coral exoskeleton as a bone graft substitute: a review.
    Demers C; Hamdy CR; Corsi K; Chellat F; Tabrizian M; Yahia L
    Biomed Mater Eng; 2002; 12(1):15-35. PubMed ID: 11847406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Experimental study on bone formation in a denser coral used for repairing cortical defects in dogs].
    Zeng R; Ren C; Li C
    Zhonghua Kou Qiang Yi Xue Za Zhi; 1997 Jan; 32(1):16-8. PubMed ID: 10677937
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The resorption of bone-implanted corals varies with porosity but also with the host reaction.
    Roudier M; Bouchon C; Rouvillain JL; Amédée J; Bareille R; Rouais F; Fricain JC; Dupuy B; Kien P; Jeandot R
    J Biomed Mater Res; 1995 Aug; 29(8):909-15. PubMed ID: 7593034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anchoring dental implant in tissue-engineered bone using composite scaffold: a preliminary study in nude mouse model.
    Chen F; Ouyang H; Feng X; Gao Z; Yang Y; Zou X; Liu T; Zhao G; Mao T
    J Oral Maxillofac Surg; 2005 May; 63(5):586-91. PubMed ID: 15883930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Subperiosteal implantation of block coral on the rabbit cavarial bone].
    Miao L; Liu B
    Zhonghua Kou Qiang Yi Xue Za Zhi; 1997 Jul; 32(4):221-3. PubMed ID: 10680509
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Natural coral used as a replacement biomaterial in bone grafts].
    Patat JL; Guillemin G
    Ann Chir Plast Esthet; 1989; 34(3):221-5. PubMed ID: 2473677
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [The use of coral as a substitute for maxillofacial bone reconstruction].
    Zeng RS
    Zhonghua Kou Qiang Yi Xue Za Zhi; 1991 Nov; 26(6):345-7, 389-90. PubMed ID: 1687918
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An evaluation of variables influencing implant fixation by direct bone apposition.
    Thomas KA; Cook SD
    J Biomed Mater Res; 1985 Oct; 19(8):875-901. PubMed ID: 3880349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of bone using bone marrow stromal cells and a silicon-stabilized tricalcium phosphate bioceramic: evidence for a coupling between bone formation and scaffold resorption.
    Mastrogiacomo M; Papadimitropoulos A; Cedola A; Peyrin F; Giannoni P; Pearce SG; Alini M; Giannini C; Guagliardi A; Cancedda R
    Biomaterials; 2007 Mar; 28(7):1376-84. PubMed ID: 17134749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gross, radiology and ultrasonographic evaluation of coral post-implantation in sheep femur.
    Fadilah A; Zuki AB; Loqman MY; Zamri-Saad M; Norimah Y; Asnah H
    Med J Malaysia; 2004 May; 59 Suppl B():178-9. PubMed ID: 15468876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Peri-implant osteogenesis in health and osteoporosis.
    Marco F; Milena F; Gianluca G; Vittoria O
    Micron; 2005; 36(7-8):630-44. PubMed ID: 16182543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new saw technique improves preparation of bone sections for light and electron microscopy.
    Klein CP; Sauren YM; Modderman WE; van der Waerden JP
    J Appl Biomater; 1994; 5(4):369-73. PubMed ID: 8580545
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bone ingrowth in porous titanium implants produced by 3D fiber deposition.
    Li JP; Habibovic P; van den Doel M; Wilson CE; de Wijn JR; van Blitterswijk CA; de Groot K
    Biomaterials; 2007 Jun; 28(18):2810-20. PubMed ID: 17367852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of coral as a bone graft substitute.
    Guillemin G; Patat JL; Fournie J; Chetail M
    J Biomed Mater Res; 1987 May; 21(5):557-67. PubMed ID: 2884221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Selected light microscopy and polarization optical studies of implant-bone interfaces].
    Drechsler C; Radestock J; Köhler S; Staudt J
    Z Exp Chir Transplant Kunstliche Organe; 1983; 16(6):323-31. PubMed ID: 6666189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomechanical and histomorphometric comparison between zirconia implants with varying surface textures and a titanium implant in the maxilla of miniature pigs.
    Gahlert M; Gudehus T; Eichhorn S; Steinhauser E; Kniha H; Erhardt W
    Clin Oral Implants Res; 2007 Oct; 18(5):662-8. PubMed ID: 17608736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Periodontal repair in dogs: guided tissue regeneration enhances bone formation in sites implanted with a coral-derived calcium carbonate biomaterial.
    Koo KT; Polimeni G; Qahash M; Kim CK; Wikesjö UM
    J Clin Periodontol; 2005 Jan; 32(1):104-10. PubMed ID: 15642067
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Histological findings of long-term healing of the experimental defects by application of a synthetic biphasic ceramic in rats.
    Develioglu H; Saraydin SU; Dupoirieux L; Sahin ZD
    J Biomed Mater Res A; 2007 Feb; 80(2):505-8. PubMed ID: 17120224
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.