These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 27380992)

  • 1. Comparison of large networks with sub-sampling strategies.
    Ali W; Wegner AE; Gaunt RE; Deane CM; Reinert G
    Sci Rep; 2016 Jul; 6():28955. PubMed ID: 27380992
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proper evaluation of alignment-free network comparison methods.
    Yaveroğlu ÖN; Milenković T; Pržulj N
    Bioinformatics; 2015 Aug; 31(16):2697-704. PubMed ID: 25810431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alignment-free protein interaction network comparison.
    Ali W; Rito T; Reinert G; Sun F; Deane CM
    Bioinformatics; 2014 Sep; 30(17):i430-7. PubMed ID: 25161230
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GraphCrunch 2: Software tool for network modeling, alignment and clustering.
    Kuchaiev O; Stevanović A; Hayes W; Pržulj N
    BMC Bioinformatics; 2011 Jan; 12():24. PubMed ID: 21244715
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biological network comparison using graphlet degree distribution.
    Przulj N
    Bioinformatics; 2007 Jan; 23(2):e177-83. PubMed ID: 17237089
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A linear programming approach for estimating the structure of a sparse linear genetic network from transcript profiling data.
    Bhadra S; Bhattacharyya C; Chandra NR; Mian IS
    Algorithms Mol Biol; 2009 Feb; 4():5. PubMed ID: 19239685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting lncRNA-disease associations using network topological similarity based on deep mining heterogeneous networks.
    Zhang H; Liang Y; Peng C; Han S; Du W; Li Y
    Math Biosci; 2019 Sep; 315():108229. PubMed ID: 31323239
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design and Implementation of a New Local Alignment Algorithm for Multilayer Networks.
    Milano M; Guzzi PH; Cannataro M
    Entropy (Basel); 2022 Sep; 24(9):. PubMed ID: 36141158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The future of Cochrane Neonatal.
    Soll RF; Ovelman C; McGuire W
    Early Hum Dev; 2020 Nov; 150():105191. PubMed ID: 33036834
    [TBL] [Abstract][Full Text] [Related]  

  • 11. New Markov-Shannon Entropy models to assess connectivity quality in complex networks: from molecular to cellular pathway, Parasite-Host, Neural, Industry, and Legal-Social networks.
    Riera-Fernández P; Munteanu CR; Escobar M; Prado-Prado F; Martín-Romalde R; Pereira D; Villalba K; Duardo-Sánchez A; González-Díaz H
    J Theor Biol; 2012 Jan; 293():174-88. PubMed ID: 22037044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new method to measure complexity in binary or weighted networks and applications to functional connectivity in the human brain.
    Hahn K; Massopust PR; Prigarin S
    BMC Bioinformatics; 2016 Feb; 17():87. PubMed ID: 26873589
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reconstruction of large-scale regulatory networks based on perturbation graphs and transitive reduction: improved methods and their evaluation.
    Pinna A; Heise S; Flassig RJ; de la Fuente A; Klamt S
    BMC Syst Biol; 2013 Aug; 7():73. PubMed ID: 23924435
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CompNet: a GUI based tool for comparison of multiple biological interaction networks.
    Kuntal BK; Dutta A; Mande SS
    BMC Bioinformatics; 2016 Apr; 17(1):185. PubMed ID: 27112575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal network alignment with graphlet degree vectors.
    Milenković T; Ng WL; Hayes W; Przulj N
    Cancer Inform; 2010 Jun; 9():121-37. PubMed ID: 20628593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scalable Approximate Bayesian Computation for Growing Network Models via Extrapolated and Sampled Summaries.
    Raynal L; Chen S; Mira A; Onnela JP
    Bayesian Anal; 2022 Mar; 17(1):165-192. PubMed ID: 36213769
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural networks for link prediction in realistic biomedical graphs: a multi-dimensional evaluation of graph embedding-based approaches.
    Crichton G; Guo Y; Pyysalo S; Korhonen A
    BMC Bioinformatics; 2018 May; 19(1):176. PubMed ID: 29783926
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphlet-based Characterization of Directed Networks.
    Sarajlić A; Malod-Dognin N; Yaveroğlu ÖN; Pržulj N
    Sci Rep; 2016 Oct; 6():35098. PubMed ID: 27734973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. IsoRankN: spectral methods for global alignment of multiple protein networks.
    Liao CS; Lu K; Baym M; Singh R; Berger B
    Bioinformatics; 2009 Jun; 25(12):i253-8. PubMed ID: 19477996
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 7.