These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 27381301)

  • 21. Synthesis of alpha-Fe nanoparticles by solventless thermal decomposition.
    Cha HG; Kim YH; Kim CW; Lee DK; Moon SD; Kwon HW; Kang YS
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3412-6. PubMed ID: 17252778
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microwave-assisted chemistry: synthetic applications for rapid assembly of nanomaterials and organics.
    Gawande MB; Shelke SN; Zboril R; Varma RS
    Acc Chem Res; 2014 Apr; 47(4):1338-48. PubMed ID: 24666323
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthesis of Fe3O4 nanoparticles with tunable and uniform size through simple thermal decomposition.
    Wang D; Ma Q; Yang P
    J Nanosci Nanotechnol; 2012 Aug; 12(8):6432-8. PubMed ID: 22962760
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rapid microwave-assisted synthesis of sub-30nm lipid nanoparticles.
    Dunn SS; Beckford Vera DR; Benhabbour SR; Parrott MC
    J Colloid Interface Sci; 2017 Feb; 488():240-245. PubMed ID: 27835817
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Facile Synthesis of Core-shell Magnetic Mesoporous Silica Nanoparticles for pH-sensitive Anticancer Drug Delivery.
    Shao D; Wang Z; Dong WF; Zhang X; Zheng X; Xiao XA; Wang YS; Zhao X; Zhang M; Li J; Huo QS; Chen L
    Chem Biol Drug Des; 2015 Dec; 86(6):1548-53. PubMed ID: 26216620
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Scalable Synthesis of High Entropy Alloy Nanoparticles by Microwave Heating.
    Qiao H; Saray MT; Wang X; Xu S; Chen G; Huang Z; Chen C; Zhong G; Dong Q; Hong M; Xie H; Shahbazian-Yassar R; Hu L
    ACS Nano; 2021 Sep; 15(9):14928-14937. PubMed ID: 34423972
    [TBL] [Abstract][Full Text] [Related]  

  • 27. AuPd-Fe
    Cho A; Byun S; Cho JH; Kim BM
    ChemSusChem; 2019 May; 12(10):2310-2317. PubMed ID: 30839174
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Size-tunable synthesis of iron oxide nanocrystals by continuous seed-mediated growth: role of alkylamine species in the stepwise thermal decomposition of iron(II) oxalate.
    Nozawa R; Naka T; Kurihara M; Togashi T
    Dalton Trans; 2021 Nov; 50(44):16021-16029. PubMed ID: 34613325
    [TBL] [Abstract][Full Text] [Related]  

  • 29. One Step Preparation of Reduced Graphene Oxide/Pd-Fe3 O4 @Polypyrrole Composites and Their Application in Catalysis.
    Yao T; Wang H; Zuo Q; Wu J; Zhang X; Cui F; Cui T
    Chem Asian J; 2015 Sep; 10(9):1940-7. PubMed ID: 26110436
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optimizing the Binding Energy of the Surfactant to Iron Oxide Yields Truly Monodisperse Nanoparticles.
    Sharifi Dehsari H; Harris RA; Ribeiro AH; Tremel W; Asadi K
    Langmuir; 2018 Jun; 34(22):6582-6590. PubMed ID: 29726684
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A critical assessment of the specific role of microwave irradiation in the synthesis of ZnO micro- and nanostructured materials.
    Baghbanzadeh M; Skapin SD; Orel ZC; Kappe CO
    Chemistry; 2012 Apr; 18(18):5724-31. PubMed ID: 22454084
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides.
    Kwon SG; Hyeon T
    Acc Chem Res; 2008 Dec; 41(12):1696-709. PubMed ID: 18681462
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anisotropic Magnetite Nanorods for Enhanced Magnetic Hyperthermia.
    Geng S; Yang H; Ren X; Liu Y; He S; Zhou J; Su N; Li Y; Xu C; Zhang X; Cheng Z
    Chem Asian J; 2016 Nov; 11(21):2996-3000. PubMed ID: 27615802
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Investigation of the formation of CuInS2 nanoparticles by the oleylamine route: comparison of microwave-assisted and conventional syntheses.
    Pein A; Baghbanzadeh M; Rath T; Haas W; Maier E; Amenitsch H; Hofer F; Kappe CO; Trimmel G
    Inorg Chem; 2011 Jan; 50(1):193-200. PubMed ID: 21141832
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Composite Scaffolds of Gelatin and Fe
    Sun R; Chen H; Zheng J; Yoshitomi T; Kawazoe N; Yang Y; Chen G
    Adv Healthc Mater; 2023 Apr; 12(9):e2202604. PubMed ID: 36534783
    [TBL] [Abstract][Full Text] [Related]  

  • 36. From iron coordination compounds to metal oxide nanoparticles.
    Iacob M; Racles C; Tugui C; Stiubianu G; Bele A; Sacarescu L; Timpu D; Cazacu M
    Beilstein J Nanotechnol; 2016; 7():2074-2087. PubMed ID: 28144555
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fe3 O4 Anisotropic Nanostructures in Hydrogels: Efficient Catalysts for the Rapid Removal of Organic Dyes from Wastewater.
    Gao Y; Hu C; Zheng WJ; Yang S; Li F; Sun SD; Zrínyi M; Osada Y; Yang ZM; Chen YM
    Chemphyschem; 2016 Jul; 17(13):1999-2007. PubMed ID: 26955896
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of heating rate, temperature and iron catalysis on the thermal behaviour and decomposition of 2-nitrobenzoyl chloride.
    Lever SD; Papadaki M
    J Hazard Mater; 2006 Mar; 130(1-2):76-87. PubMed ID: 16236442
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Microwave-enhanced reaction rates for nanoparticle synthesis.
    Gerbec JA; Magana D; Washington A; Strouse GF
    J Am Chem Soc; 2005 Nov; 127(45):15791-800. PubMed ID: 16277522
    [TBL] [Abstract][Full Text] [Related]  

  • 40. One-Step Synthesis and High-Efficiency Decoloration of Multifunctional Porous-C/Fe
    Wang LZ; Wen M; Yuan PS; Zhou L; Wu QS
    Chempluschem; 2013 Aug; 78(8):816-822. PubMed ID: 31986679
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.