BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

320 related articles for article (PubMed ID: 27381353)

  • 1. Evaluation of Cerebral Hemodynamics and Tissue Morphology of In Vivo Rat Brain Using Spectral Diffuse Reflectance Imaging.
    Nishidate I; Ishizuka T; Mustari A; Yoshida K; Kawauchi S; Sato S; Sato M
    Appl Spectrosc; 2017 May; 71(5):866-878. PubMed ID: 27381353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multispectral imaging of absorption and scattering properties of in vivo exposed rat brain using a digital red-green-blue camera.
    Yoshida K; Nishidate I; Ishizuka T; Kawauchi S; Sato S; Sato M
    J Biomed Opt; 2015 May; 20(5):051026. PubMed ID: 25614979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Vivo Evaluation of Cerebral Hemodynamics and Tissue Morphology in Rats during Changing Fraction of Inspired Oxygen Based on Spectrocolorimetric Imaging Technique.
    Mustari A; Kanie T; Kawauchi S; Sato S; Sato M; Kokubo Y; Nishidate I
    Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29415505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simultaneous Evaluation of Cerebral Hemodynamics and Light Scattering Properties of the In Vivo Rat Brain Using Multispectral Diffuse Reflectance Imaging.
    Nishidate I; Mustari A; Kawauchi S; Sato S; Sato M
    J Vis Exp; 2017 May; (123):. PubMed ID: 28518117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Noninvasive evaluation of hemodynamics and light scattering property during two-stage mouse cutaneous carcinogenesis based on multispectral diffuse reflectance images at isosbestic wavelengths of hemoglobin.
    Wares MA; Tobita N; Kawauchi S; Sato S; Nishidate I
    J Biomed Opt; 2019 Jan; 24(3):1-11. PubMed ID: 30635994
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monitoring of tissue optical properties during thermal coagulation of ex vivo tissues.
    Nagarajan VK; Yu B
    Lasers Surg Med; 2016 Sep; 48(7):686-94. PubMed ID: 27250022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Changes in optical properties of rat cerebral cortical slices during oxygen glucose deprivation.
    Nishidate I; Yoshida K; Sato M
    Appl Opt; 2010 Dec; 49(34):6617-23. PubMed ID: 21124539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noninvasive spectral imaging of skin chromophores based on multiple regression analysis aided by Monte Carlo simulation.
    Nishidate I; Wiswadarma A; Hase Y; Tanaka N; Maeda T; Niizeki K; Aizu Y
    Opt Lett; 2011 Aug; 36(16):3239-41. PubMed ID: 21847220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo estimation of light scattering and absorption properties of rat brain using a single-reflectance fiber probe during cortical spreading depression.
    Nishidate I; Mizushima C; Yoshida K; Kawauchi S; Sato S; Sato M
    J Biomed Opt; 2015 Feb; 20(2):27003. PubMed ID: 25672817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantification of light reflectance spectroscopy and its application: determination of hemodynamics on the rat spinal cord and brain induced by electrical stimulation.
    Sharma V; He JW; Narvenkar S; Peng YB; Liu H
    Neuroimage; 2011 Jun; 56(3):1316-28. PubMed ID: 21255660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In Vivo Transcutaneous Monitoring of Hemoglobin Derivatives Using a Red-Green-Blue Camera-Based Spectral Imaging Technique.
    Khatun F; Aizu Y; Nishidate I
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33546389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro determination of normal and neoplastic human brain tissue optical properties using inverse adding-doubling.
    Gebhart SC; Lin WC; Mahadevan-Jansen A
    Phys Med Biol; 2006 Apr; 51(8):2011-27. PubMed ID: 16585842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoacoustic detection and optical spectroscopy of high-intensity focused ultrasound-induced thermal lesions in biologic tissue.
    Alhamami M; Kolios MC; Tavakkoli J
    Med Phys; 2014 May; 41(5):053502. PubMed ID: 24784408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring hemodynamic and morphologic responses to closed head injury in a mouse model using orthogonal diffuse near-infrared light reflectance spectroscopy.
    Abookasis D; Shochat A; Mathews MS
    J Biomed Opt; 2013 Apr; 18(4):045003. PubMed ID: 23558510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Method to quantitatively estimate wavelength-dependent scattering properties from multidiameter single fiber reflectance spectra measured in a turbid medium.
    Kanick SC; Gamm UA; Sterenborg HJ; Robinson DJ; Amelink A
    Opt Lett; 2011 Aug; 36(15):2997-9. PubMed ID: 21808384
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring and imaging of transcutaneous bilirubin, hemoglobin, and melanin based on diffuse reflectance spectroscopy.
    Minakawa M; Wares MA; Nakano K; Haneishi H; Aizu Y; Hayasaki Y; Ikeda T; Nagahara H; Nishidate I
    J Biomed Opt; 2023 Oct; 28(10):107001. PubMed ID: 37915398
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Experimental validation of Monte Carlo modeling of fluorescence in tissues in the UV-visible spectrum.
    Liu Q; Zhu C; Ramanujam N
    J Biomed Opt; 2003 Apr; 8(2):223-36. PubMed ID: 12683848
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spectroscopic method for determination of the absorption coefficient in brain tissue.
    Johansson JD
    J Biomed Opt; 2010; 15(5):057005. PubMed ID: 21054121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of shear rate on the optical properties of human blood in the spectral range 250 to 1100 nm.
    Friebel M; Helfmann J; Müller G; Meinke M
    J Biomed Opt; 2007; 12(5):054005. PubMed ID: 17994893
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 16.