These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 27381562)

  • 1. 3D patterned stem cell differentiation using thermo-responsive methylcellulose hydrogel molds.
    Lee W; Park J
    Sci Rep; 2016 Jul; 6():29408. PubMed ID: 27381562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermo-responsive methylcellulose hydrogels as temporary substrate for cell sheet biofabrication.
    Altomare L; Cochis A; Carletta A; Rimondini L; Farè S
    J Mater Sci Mater Med; 2016 May; 27(5):95. PubMed ID: 26984360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel living cell sheet harvest system composed of thermoreversible methylcellulose hydrogels.
    Chen CH; Tsai CC; Chen W; Mi FL; Liang HF; Chen SC; Sung HW
    Biomacromolecules; 2006 Mar; 7(3):736-43. PubMed ID: 16529408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Injectable and Thermosensitive Soluble Extracellular Matrix and Methylcellulose Hydrogels for Stem Cell Delivery in Skin Wounds.
    Kim EJ; Choi JS; Kim JS; Choi YC; Cho YW
    Biomacromolecules; 2016 Jan; 17(1):4-11. PubMed ID: 26607961
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Injectable methylcellulose hydrogel containing silver oxide nanoparticles for burn wound healing.
    Kim MH; Park H; Nam HC; Park SR; Jung JY; Park WH
    Carbohydr Polym; 2018 Feb; 181():579-586. PubMed ID: 29254010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional culture and differentiation of human osteogenic cells in an injectable hydroxypropylmethylcellulose hydrogel.
    Trojani C; Weiss P; Michiels JF; Vinatier C; Guicheux J; Daculsi G; Gaudray P; Carle GF; Rochet N
    Biomaterials; 2005 Sep; 26(27):5509-17. PubMed ID: 15860207
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-Responsive Methylcellulose-Hyaluronic Hydrogel as a 3D Cell Culture Matrix.
    Mahboubian A; Vllasaliu D; Dorkoosh FA; Stolnik S
    Biomacromolecules; 2020 Dec; 21(12):4737-4746. PubMed ID: 32946219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-pot synthesis of injectable methylcellulose hydrogel containing calcium phosphate nanoparticles.
    Park H; Kim MH; Yoon YI; Park WH
    Carbohydr Polym; 2017 Feb; 157():775-783. PubMed ID: 27987990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel method of forming human embryoid bodies in a polystyrene dish surface-coated with a temperature-responsive methylcellulose hydrogel.
    Yang MJ; Chen CH; Lin PJ; Huang CH; Chen W; Sung HW
    Biomacromolecules; 2007 Sep; 8(9):2746-52. PubMed ID: 17676800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A methylcellulose and collagen based temperature responsive hydrogel promotes encapsulated stem cell viability and proliferation in vitro.
    Payne C; Dolan EB; O'Sullivan J; Cryan SA; Kelly HM
    Drug Deliv Transl Res; 2017 Feb; 7(1):132-146. PubMed ID: 27924469
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The alignment and fusion assembly of adipose-derived stem cells on mechanically patterned matrices.
    Choi YS; Vincent LG; Lee AR; Kretchmer KC; Chirasatitsin S; Dobke MK; Engler AJ
    Biomaterials; 2012 Oct; 33(29):6943-51. PubMed ID: 22800539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polyisocyanopeptide hydrogels: A novel thermo-responsive hydrogel supporting pre-vascularization and the development of organotypic structures.
    Zimoch J; Padial JS; Klar AS; Vallmajo-Martin Q; Meuli M; Biedermann T; Wilson CJ; Rowan A; Reichmann E
    Acta Biomater; 2018 Apr; 70():129-139. PubMed ID: 29454158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Injectable thermo-responsive hydrogel composed of xanthan gum and methylcellulose double networks with shear-thinning property.
    Liu Z; Yao P
    Carbohydr Polym; 2015 Nov; 132():490-8. PubMed ID: 26256374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Three-Dimensional Culture in a Methylcellulose-Based Hydrogel to Study the Impact of Stiffness on Megakaryocyte Differentiation.
    Aguilar A; Boscher J; Pertuy F; Gachet C; Léon C
    Methods Mol Biol; 2018; 1812():139-153. PubMed ID: 30171577
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of methylcellulose on the formation and drug release behavior of silk fibroin hydrogel.
    Park CH; Jeong L; Cho D; Kwon OH; Park WH
    Carbohydr Polym; 2013 Oct; 98(1):1179-85. PubMed ID: 23987461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Methylcellulose Based Thermally Reversible Hydrogels.
    Forghani A; Devireddy R
    Methods Mol Biol; 2018; 1773():41-51. PubMed ID: 29687380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Behavior of CMPCs in unidirectional constrained and stress-free 3D hydrogels.
    van Marion MH; Bax NA; van Turnhout MC; Mauretti A; van der Schaft DW; Goumans MJ; Bouten CV
    J Mol Cell Cardiol; 2015 Oct; 87():79-91. PubMed ID: 26278995
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Internally self-assembled thermoreversible gelling emulsions: ISAsomes in methylcellulose, kappa-carrageenan, and mixed hydrogels.
    Tomsic M; Guillot S; Sagalowicz L; Leser ME; Glatter O
    Langmuir; 2009 Aug; 25(16):9525-34. PubMed ID: 19505132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient differentiation of stem cells encapsulated in a cytocompatible phospholipid polymer hydrogel with tunable physical properties.
    Oda H; Konno T; Ishihara K
    Biomaterials; 2015 Jul; 56():86-91. PubMed ID: 25934282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermo-Responsive Methylcellulose Hydrogels: From Design to Applications as Smart Biomaterials.
    Bonetti L; De Nardo L; Farè S
    Tissue Eng Part B Rev; 2021 Oct; 27(5):486-513. PubMed ID: 33115329
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.