These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 27381914)

  • 21. CikA, an Input Pathway Component, Senses the Oxidized Quinone Signal to Generate Phase Delays in the Cyanobacterial Circadian Clock.
    Kim P; Porr B; Mori T; Kim YS; Johnson CH; Diekman CO; Kim YI
    J Biol Rhythms; 2020 Jun; 35(3):227-234. PubMed ID: 31983264
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Architecture and mechanism of the central gear in an ancient molecular timer.
    Egli M
    J R Soc Interface; 2017 Mar; 14(128):. PubMed ID: 28330987
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Circadian Rhythms in Cyanobacteria.
    Cohen SE; Golden SS
    Microbiol Mol Biol Rev; 2015 Dec; 79(4):373-85. PubMed ID: 26335718
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Natural changes in light interact with circadian regulation at promoters to control gene expression in cyanobacteria.
    Piechura JR; Amarnath K; O'Shea EK
    Elife; 2017 Dec; 6():. PubMed ID: 29239721
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An Unstable Singularity Underlies Stochastic Phasing of the Circadian Clock in Individual Cyanobacterial Cells.
    Gan S; O'Shea EK
    Mol Cell; 2017 Aug; 67(4):659-672.e12. PubMed ID: 28803778
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A mathematical model for the Kai-protein-based chemical oscillator and clock gene expression rhythms in cyanobacteria.
    Miyoshi F; Nakayama Y; Kaizu K; Iwasaki H; Tomita M
    J Biol Rhythms; 2007 Feb; 22(1):69-80. PubMed ID: 17229926
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Involvement of glycogen metabolism in circadian control of UV resistance in cyanobacteria.
    Kawasaki K; Iwasaki H
    PLoS Genet; 2020 Nov; 16(11):e1009230. PubMed ID: 33253146
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Giving Time Purpose: The Synechococcus elongatus Clock in a Broader Network Context.
    Shultzaberger RK; Boyd JS; Diamond S; Greenspan RJ; Golden SS
    Annu Rev Genet; 2015; 49():485-505. PubMed ID: 26442846
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Phase-dependent generation and transmission of time information by the KaiABC circadian clock oscillator through SasA-KaiC interaction in cyanobacteria.
    Valencia S J; Bitou K; Ishii K; Murakami R; Morishita M; Onai K; Furukawa Y; Imada K; Namba K; Ishiura M
    Genes Cells; 2012 May; 17(5):398-419. PubMed ID: 22512339
    [TBL] [Abstract][Full Text] [Related]  

  • 30. CikA, a bacteriophytochrome that resets the cyanobacterial circadian clock.
    Schmitz O; Katayama M; Williams SB; Kondo T; Golden SS
    Science; 2000 Aug; 289(5480):765-8. PubMed ID: 10926536
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diversity of KaiC-based timing systems in marine Cyanobacteria.
    Axmann IM; Hertel S; Wiegard A; Dörrich AK; Wilde A
    Mar Genomics; 2014 Apr; 14():3-16. PubMed ID: 24388874
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A circadian timing mechanism in the cyanobacteria.
    Williams SB
    Adv Microb Physiol; 2007; 52():229-96. PubMed ID: 17027373
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The circadian clock ensures successful DNA replication in cyanobacteria.
    Liao Y; Rust MJ
    Proc Natl Acad Sci U S A; 2021 May; 118(20):. PubMed ID: 33972427
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The circadian rhythm regulator RpaA modulates photosynthetic electron transport and alters the preferable temperature range for growth in a cyanobacterium.
    Hasegawa H; Tsurumaki T; Imamura S; Sonoike K; Tanaka K
    FEBS Lett; 2021 May; 595(10):1480-1492. PubMed ID: 33728661
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quinone sensing by the circadian input kinase of the cyanobacterial circadian clock.
    Ivleva NB; Gao T; LiWang AC; Golden SS
    Proc Natl Acad Sci U S A; 2006 Nov; 103(46):17468-73. PubMed ID: 17088557
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Alteration of cyanobacterial sugar and amino acid metabolism by overexpression hik8, encoding a KaiC-associated histidine kinase.
    Osanai T; Shirai T; Iijima H; Kuwahara A; Suzuki I; Kondo A; Hirai MY
    Environ Microbiol; 2015 Jul; 17(7):2430-40. PubMed ID: 25403325
    [TBL] [Abstract][Full Text] [Related]  

  • 37. LdpA: a component of the circadian clock senses redox state of the cell.
    Ivleva NB; Bramlett MR; Lindahl PA; Golden SS
    EMBO J; 2005 Mar; 24(6):1202-10. PubMed ID: 15775978
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A model of the circadian clock in the cyanobacterium Cyanothece sp. ATCC 51142.
    Vinh NX; Chetty M; Coppel R; Gaudana S; Wangikar PP
    BMC Bioinformatics; 2013; 14 Suppl 2(Suppl 2):S14. PubMed ID: 23368635
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An allele of the crm gene blocks cyanobacterial circadian rhythms.
    Boyd JS; Bordowitz JR; Bree AC; Golden SS
    Proc Natl Acad Sci U S A; 2013 Aug; 110(34):13950-5. PubMed ID: 23918383
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The itty-bitty time machine genetics of the cyanobacterial circadian clock.
    Mackey SR; Golden SS; Ditty JL
    Adv Genet; 2011; 74():13-53. PubMed ID: 21924974
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.