BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 27381916)

  • 1. Choline Catabolism in Burkholderia thailandensis Is Regulated by Multiple Glutamine Amidotransferase 1-Containing AraC Family Transcriptional Regulators.
    Nock AM; Wargo MJ
    J Bacteriol; 2016 Sep; 198(18):2503-14. PubMed ID: 27381916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sarcosine Catabolism in Pseudomonas aeruginosa Is Transcriptionally Regulated by SouR.
    Willsey GG; Wargo MJ
    J Bacteriol; 2016 Jan; 198(2):301-10. PubMed ID: 26503852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ScmR, a Global Regulator of Gene Expression, Quorum Sensing, pH Homeostasis, and Virulence in
    Le Guillouzer S; Groleau MC; Mauffrey F; Déziel E
    J Bacteriol; 2020 Jun; 202(13):. PubMed ID: 32312745
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GbdR regulates Pseudomonas aeruginosa plcH and pchP transcription in response to choline catabolites.
    Wargo MJ; Ho TC; Gross MJ; Whittaker LA; Hogan DA
    Infect Immun; 2009 Mar; 77(3):1103-11. PubMed ID: 19103776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of the GbdR regulon in Pseudomonas aeruginosa.
    Hampel KJ; LaBauve AE; Meadows JA; Fitzsimmons LF; Nock AM; Wargo MJ
    J Bacteriol; 2014 Jan; 196(1):7-15. PubMed ID: 24097953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pseudomonas aeruginosa gbdR gene is transcribed from a σ54-dependent promoter under the control of NtrC/CbrB, IHF and BetI.
    Sánchez DG; Primo ED; Damiani MT; Lisa AT
    Microbiology (Reading); 2017 Sep; 163(9):1343-1354. PubMed ID: 28791946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cross-species comparison of the Burkholderia pseudomallei, Burkholderia thailandensis, and Burkholderia mallei quorum-sensing regulons.
    Majerczyk CD; Brittnacher MJ; Jacobs MA; Armour CD; Radey MC; Bunt R; Hayden HS; Bydalek R; Greenberg EP
    J Bacteriol; 2014 Nov; 196(22):3862-71. PubMed ID: 25182491
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Small-molecule inhibition of choline catabolism in Pseudomonas aeruginosa and other aerobic choline-catabolizing bacteria.
    Fitzsimmons LF; Flemer S; Wurthmann AS; Deker PB; Sarkar IN; Wargo MJ
    Appl Environ Microbiol; 2011 Jul; 77(13):4383-9. PubMed ID: 21602374
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of two gene clusters and a transcriptional regulator required for Pseudomonas aeruginosa glycine betaine catabolism.
    Wargo MJ; Szwergold BS; Hogan DA
    J Bacteriol; 2008 Apr; 190(8):2690-9. PubMed ID: 17951379
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two
    Le Guillouzer S; Groleau MC; Déziel E
    J Bacteriol; 2018 Jul; 200(14):. PubMed ID: 29507087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of tellurite-resistant genetic tools for single-copy chromosomal analysis of Burkholderia spp. and characterization of the Burkholderia thailandensis betBA operon.
    Kang Y; Norris MH; Barrett AR; Wilcox BA; Hoang TT
    Appl Environ Microbiol; 2009 Jun; 75(12):4015-27. PubMed ID: 19376905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The AraC-Type Transcriptional Regulator GliR (PA3027) Activates Genes of Glycerolipid Metabolism in
    Kotecka K; Kawalek A; Kobylecki K; Bartosik AA
    Int J Mol Sci; 2021 May; 22(10):. PubMed ID: 34064685
    [No Abstract]   [Full Text] [Related]  

  • 13. Mapping of the Denitrification Pathway in Burkholderia thailandensis by Genome-Wide Mutant Profiling.
    Vitale A; Paszti S; Takahashi K; Toyofuku M; Pessi G; Eberl L
    J Bacteriol; 2020 Nov; 202(23):. PubMed ID: 32900830
    [No Abstract]   [Full Text] [Related]  

  • 14. Burkholderia thailandensis Methylated Hydroxyalkylquinolines: Biosynthesis and Antimicrobial Activity in Cocultures.
    Klaus JR; Majerczyk C; Moon S; Eppler NA; Smith S; Tuma E; Groleau MC; Asfahl KL; Smalley NE; Hayden HS; Piochon M; Ball P; Dandekar AA; Gauthier C; Déziel E; Chandler JR
    Appl Environ Microbiol; 2020 Nov; 86(24):. PubMed ID: 33008823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Roles of three transporters, CbcXWV, BetT1, and BetT3, in Pseudomonas aeruginosa choline uptake for catabolism.
    Malek AA; Chen C; Wargo MJ; Beattie GA; Hogan DA
    J Bacteriol; 2011 Jun; 193(12):3033-41. PubMed ID: 21478341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transcriptional Regulation of Carnitine Catabolism in
    Meadows JA; Wargo MJ
    mSphere; 2018; 3(1):. PubMed ID: 29435492
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Homeostasis and catabolism of choline and glycine betaine: lessons from Pseudomonas aeruginosa.
    Wargo MJ
    Appl Environ Microbiol; 2013 Apr; 79(7):2112-20. PubMed ID: 23354714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The Complex Quorum Sensing Circuitry of
    Le Guillouzer S; Groleau MC; Déziel E
    mBio; 2017 Dec; 8(6):. PubMed ID: 29208745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DNA binding site analysis of Burkholderia thailandensis response regulators.
    Nowak-Lovato KL; Hickmott AJ; Maity TS; Bulyk ML; Dunbar J; Hong-Geller E
    J Microbiol Methods; 2012 Jul; 90(1):46-52. PubMed ID: 22521922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Choline catabolism to glycine betaine contributes to Pseudomonas aeruginosa survival during murine lung infection.
    Wargo MJ
    PLoS One; 2013; 8(2):e56850. PubMed ID: 23457628
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.