BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

486 related articles for article (PubMed ID: 27382036)

  • 1. Control of skeletal muscle atrophy in response to disuse: clinical/preclinical contentions and fallacies of evidence.
    Atherton PJ; Greenhaff PL; Phillips SM; Bodine SC; Adams CM; Lang CH
    Am J Physiol Endocrinol Metab; 2016 Sep; 311(3):E594-604. PubMed ID: 27382036
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Skeletal muscle immobilisation-induced atrophy: mechanistic insights from human studies.
    Deane CS; Piasecki M; Atherton PJ
    Clin Sci (Lond); 2024 Jun; 138(12):741-756. PubMed ID: 38895777
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oxidative stress and disuse muscle atrophy: cause or consequence?
    Powers SK; Smuder AJ; Judge AR
    Curr Opin Clin Nutr Metab Care; 2012 May; 15(3):240-5. PubMed ID: 22466926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skeletal muscle atrophy during short-term disuse: implications for age-related sarcopenia.
    Wall BT; Dirks ML; van Loon LJ
    Ageing Res Rev; 2013 Sep; 12(4):898-906. PubMed ID: 23948422
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disuse-induced skeletal muscle atrophy in disease and nondisease states in humans: mechanisms, prevention, and recovery strategies.
    Nunes EA; Stokes T; McKendry J; Currier BS; Phillips SM
    Am J Physiol Cell Physiol; 2022 Jun; 322(6):C1068-C1084. PubMed ID: 35476500
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Skeletal muscle atrophy: disease-induced mechanisms may mask disuse atrophy.
    Malavaki CJ; Sakkas GK; Mitrou GI; Kalyva A; Stefanidis I; Myburgh KH; Karatzaferi C
    J Muscle Res Cell Motil; 2015 Dec; 36(6):405-21. PubMed ID: 26728748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nutritional strategies to attenuate muscle disuse atrophy.
    Wall BT; van Loon LJ
    Nutr Rev; 2013 Apr; 71(4):195-208. PubMed ID: 23550781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mitochondrial signaling contributes to disuse muscle atrophy.
    Powers SK; Wiggs MP; Duarte JA; Zergeroglu AM; Demirel HA
    Am J Physiol Endocrinol Metab; 2012 Jul; 303(1):E31-9. PubMed ID: 22395111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Declines in muscle protein synthesis account for short-term muscle disuse atrophy in humans in the absence of increased muscle protein breakdown.
    Brook MS; Stokes T; Gorissen SHM; Bass JJ; McGlory C; Cegielski J; Wilkinson DJ; Phillips BE; Smith K; Phillips SM; Atherton PJ
    J Cachexia Sarcopenia Muscle; 2022 Aug; 13(4):2005-2016. PubMed ID: 35606155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Skeletal Muscle Recovery from Disuse Atrophy: Protein Turnover Signaling and Strategies for Accelerating Muscle Regrowth.
    Mirzoev TM
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33114683
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deciphering the Therapeutic Role of Lactate in Combating Disuse-Induced Muscle Atrophy: An NMR-Based Metabolomic Study in Mice.
    Zhou Y; Liu X; Qi Z; Yang L; Huang C; Lin D
    Molecules; 2024 May; 29(10):. PubMed ID: 38792078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transcriptomic and epigenetic regulation of disuse atrophy and the return to activity in skeletal muscle.
    Fisher AG; Seaborne RA; Hughes TM; Gutteridge A; Stewart C; Coulson JM; Sharples AP; Jarvis JC
    FASEB J; 2017 Dec; 31(12):5268-5282. PubMed ID: 28821632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of Protein Synthesis in Inactivated Skeletal Muscle: Signal Inputs, Protein Kinase Cascades, and Ribosome Biogenesis.
    Mirzoev TM; Shenkman BS
    Biochemistry (Mosc); 2018 Nov; 83(11):1299-1317. PubMed ID: 30482143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of alterations in mitochondrial dynamics and PGC-1α over-expression in fast muscle atrophy following hindlimb unloading.
    Cannavino J; Brocca L; Sandri M; Grassi B; Bottinelli R; Pellegrino MA
    J Physiol; 2015 Apr; 593(8):1981-95. PubMed ID: 25565653
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanical unloading of 3D-engineered muscle leads to muscle atrophy by suppressing protein synthesis.
    Sugimoto T; Imai S; Yoshikawa M; Fujisato T; Hashimoto T; Nakamura T
    J Appl Physiol (1985); 2022 Apr; 132(4):1091-1103. PubMed ID: 35297688
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Disuse-induced muscle wasting.
    Bodine SC
    Int J Biochem Cell Biol; 2013 Oct; 45(10):2200-8. PubMed ID: 23800384
    [TBL] [Abstract][Full Text] [Related]  

  • 17. l-Carnitine supplement reduces skeletal muscle atrophy induced by prolonged hindlimb suspension in rats.
    Jang J; Park J; Chang H; Lim K
    Appl Physiol Nutr Metab; 2016 Dec; 41(12):1240-1247. PubMed ID: 27841025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Angiotensin-(1-7) attenuates disuse skeletal muscle atrophy in mice via its receptor, Mas.
    Morales MG; Abrigo J; Acuña MJ; Santos RA; Bader M; Brandan E; Simon F; Olguin H; Cabrera D; Cabello-Verrugio C
    Dis Model Mech; 2016 Apr; 9(4):441-9. PubMed ID: 26851244
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Serum extracellular vesicle miR-203a-3p content is associated with skeletal muscle mass and protein turnover during disuse atrophy and regrowth.
    Van Pelt DW; Vechetti IJ; Lawrence MM; Van Pelt KL; Patel P; Miller BF; Butterfield TA; Dupont-Versteegden EE
    Am J Physiol Cell Physiol; 2020 Aug; 319(2):C419-C431. PubMed ID: 32639875
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Female mice may have exacerbated catabolic signalling response compared to male mice during development and progression of disuse atrophy.
    Rosa-Caldwell ME; Lim S; Haynie WA; Brown JL; Deaver JW; Morena Da Silva F; Jansen LT; Lee DE; Wiggs MP; Washington TA; Greene NP
    J Cachexia Sarcopenia Muscle; 2021 Jun; 12(3):717-730. PubMed ID: 33675163
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.