These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 27382049)

  • 1. AcsF Catalyzes the ATP-dependent Insertion of Nickel into the Ni,Ni-[4Fe4S] Cluster of Acetyl-CoA Synthase.
    Gregg CM; Goetzl S; Jeoung JH; Dobbek H
    J Biol Chem; 2016 Aug; 291(35):18129-38. PubMed ID: 27382049
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A functional Ni-Ni-[4Fe-4S] cluster in the monomeric acetyl-CoA synthase from Carboxydothermus hydrogenoformans.
    Svetlitchnyi V; Dobbek H; Meyer-Klaucke W; Meins T; Thiele B; Römer P; Huber R; Meyer O
    Proc Natl Acad Sci U S A; 2004 Jan; 101(2):446-51. PubMed ID: 14699043
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different modes of carbon monoxide binding to acetyl-CoA synthase and the role of a conserved phenylalanine in the coordination environment of nickel.
    Gencic S; Kelly K; Ghebreamlak S; Duin EC; Grahame DA
    Biochemistry; 2013 Mar; 52(10):1705-16. PubMed ID: 23394607
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification and preliminary characterization of AcsF, a putative Ni-insertase used in the biosynthesis of acetyl-CoA synthase from Clostridium thermoaceticum.
    Loke HK; Lindahl PA
    J Inorg Biochem; 2003 Jan; 93(1-2):33-40. PubMed ID: 12538050
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CooC1 from Carboxydothermus hydrogenoformans is a nickel-binding ATPase.
    Jeoung JH; Giese T; Grünwald M; Dobbek H
    Biochemistry; 2009 Dec; 48(48):11505-13. PubMed ID: 19883128
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Infrared and EPR spectroscopic characterization of a Ni(I) species formed by photolysis of a catalytically competent Ni(I)-CO intermediate in the acetyl-CoA synthase reaction.
    Bender G; Stich TA; Yan L; Britt RD; Cramer SP; Ragsdale SW
    Biochemistry; 2010 Sep; 49(35):7516-23. PubMed ID: 20669901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of the ATP-dependent maturation factor of Ni,Fe-containing carbon monoxide dehydrogenases.
    Jeoung JH; Giese T; Grünwald M; Dobbek H
    J Mol Biol; 2010 Mar; 396(4):1165-79. PubMed ID: 20064527
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the Chemical Reactivity in Acetyl-CoA Synthase.
    Chen SL; Siegbahn PEM
    Inorg Chem; 2020 Oct; 59(20):15167-15179. PubMed ID: 33017144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stopped-Flow Kinetics of Methyl Group Transfer between the Corrinoid-Iron-Sulfur Protein and Acetyl-Coenzyme A Synthase from Clostridium thermoaceticum.
    Tan XS; Sewell C; Lindahl PA
    J Am Chem Soc; 2002 Jun; 124(22):6277-84. PubMed ID: 12033855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural Insights into Microbial One-Carbon Metabolic Enzymes Ni-Fe-S-Dependent Carbon Monoxide Dehydrogenases and Acetyl-CoA Synthases.
    Biester A; Marcano-Delgado AN; Drennan CL
    Biochemistry; 2022 Dec; 61(24):2797-2805. PubMed ID: 36137563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The metalloclusters of carbon monoxide dehydrogenase/acetyl-CoA synthase: a story in pictures.
    Drennan CL; Doukov TI; Ragsdale SW
    J Biol Inorg Chem; 2004 Jul; 9(5):511-5. PubMed ID: 15221484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional Expression of the Clostridium ljungdahlii Acetyl-Coenzyme A Synthase in Clostridium acetobutylicum as Demonstrated by a Novel
    Fast AG; Papoutsakis ET
    Appl Environ Microbiol; 2018 Apr; 84(7):. PubMed ID: 29374033
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How to Build a Metalloenzyme: Lessons from a Protein-Based Model of Acetyl Coenzyme A Synthase.
    Shafaat HS; Manesis AC; Yerbulekova A
    Acc Chem Res; 2023 May; 56(9):984-993. PubMed ID: 37042748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetyl-coenzyme A synthase: the case for a Ni(p)(0)-based mechanism of catalysis.
    Lindahl PA
    J Biol Inorg Chem; 2004 Jul; 9(5):516-24. PubMed ID: 15221478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. X-ray Absorption Spectroscopy Reveals an Organometallic Ni-C Bond in the CO-Treated Form of Acetyl-CoA Synthase.
    Can M; Giles LJ; Ragsdale SW; Sarangi R
    Biochemistry; 2017 Mar; 56(9):1248-1260. PubMed ID: 28186407
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectroscopic studies of nickel-deficient carbon monoxide dehydrogenase from Rhodospirillum rubrum: nature of the iron-sulfur clusters.
    Craft JL; Ludden PW; Brunold TC
    Biochemistry; 2002 Feb; 41(5):1681-8. PubMed ID: 11814363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of Methyl- and Acetyl-Ni Intermediates in Acetyl CoA Synthase Formed during Anaerobic CO
    Can M; Abernathy MJ; Wiley S; Griffith C; James CD; Xiong J; Guo Y; Hoffman BM; Ragsdale SW; Sarangi R
    J Am Chem Soc; 2023 Jun; 145(25):13696-13708. PubMed ID: 37306669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nickel-dependent oligomerization of the alpha subunit of acetyl-coenzyme a synthase/carbon monoxide dehydrogenase.
    Tan X; Kagiampakis I; Surovtsev IV; Demeler B; Lindahl PA
    Biochemistry; 2007 Oct; 46(41):11606-13. PubMed ID: 17887777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structures and energetics of models for the active site of acetyl-coenzyme a synthase: role of distal and proximal metals in catalysis.
    Webster CE; Darensbourg MY; Lindahl PA; Hall MB
    J Am Chem Soc; 2004 Mar; 126(11):3410-1. PubMed ID: 15025453
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the [4Fe-4S] cluster in reductive activation of the cobalt center of the corrinoid iron-sulfur protein from Clostridium thermoaceticum during acetate biosynthesis.
    Menon S; Ragsdale SW
    Biochemistry; 1998 Apr; 37(16):5689-98. PubMed ID: 9548955
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.