BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 27382138)

  • 1. Suppressing Farnesyl Diphosphate Synthase Alters Chloroplast Development and Triggers Sterol-Dependent Induction of Jasmonate- and Fe-Related Responses.
    Manzano D; Andrade P; Caudepón D; Altabella T; Arró M; Ferrer A
    Plant Physiol; 2016 Sep; 172(1):93-117. PubMed ID: 27382138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loss of plastoglobule kinases ABC1K1 and ABC1K3 causes conditional degreening, modified prenyl-lipids, and recruitment of the jasmonic acid pathway.
    Lundquist PK; Poliakov A; Giacomelli L; Friso G; Appel M; McQuinn RP; Krasnoff SB; Rowland E; Ponnala L; Sun Q; van Wijk KJ
    Plant Cell; 2013 May; 25(5):1818-39. PubMed ID: 23673981
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Overaccumulation of γ-Glutamylcysteine in a Jasmonate-Hypersensitive Arabidopsis Mutant Causes Jasmonate-Dependent Growth Inhibition.
    Wei HH; Rowe M; Riethoven JJ; Grove R; Adamec J; Jikumaru Y; Staswick P
    Plant Physiol; 2015 Oct; 169(2):1371-81. PubMed ID: 26282239
    [TBL] [Abstract][Full Text] [Related]  

  • 4. FATTY ACID DESATURASE5 Is Required to Induce Autoimmune Responses in Gigantic Chloroplast Mutants of Arabidopsis.
    Li B; Fang J; Singh RM; Zi H; Lv S; Liu R; Dogra V; Kim C
    Plant Cell; 2020 Oct; 32(10):3240-3255. PubMed ID: 32796124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DONGLE and DEFECTIVE IN ANTHER DEHISCENCE1 lipases are not essential for wound- and pathogen-induced jasmonate biosynthesis: redundant lipases contribute to jasmonate formation.
    Ellinger D; Stingl N; Kubigsteltig II; Bals T; Juenger M; Pollmann S; Berger S; Schuenemann D; Mueller MJ
    Plant Physiol; 2010 May; 153(1):114-27. PubMed ID: 20348210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Light-induced acclimation of the Arabidopsis chlorina1 mutant to singlet oxygen.
    Ramel F; Ksas B; Akkari E; Mialoundama AS; Monnet F; Krieger-Liszkay A; Ravanat JL; Mueller MJ; Bouvier F; Havaux M
    Plant Cell; 2013 Apr; 25(4):1445-62. PubMed ID: 23590883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transcriptomics Reveals Fast Changes in Salicylate and Jasmonate Signaling Pathways in Shoots of Carbonate-Tolerant
    Pérez-Martín L; Busoms S; Tolrà R; Poschenrieder C
    Int J Mol Sci; 2021 Jan; 22(3):. PubMed ID: 33513755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Complete Loss of RelA and SpoT Homologs in Arabidopsis Reveals the Importance of the Plastidial Stringent Response in the Interplay between Chloroplast Metabolism and Plant Defense Response.
    Inazu M; Nemoto T; Omata Y; Suzuki S; Ono S; Kanno Y; Seo M; Oikawa A; Masuda S
    Plant Cell Physiol; 2024 May; 65(4):631-643. PubMed ID: 37925598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Postembryonic seedling lethality in the sterol-deficient Arabidopsis cyp51A2 mutant is partially mediated by the composite action of ethylene and reactive oxygen species.
    Kim HB; Lee H; Oh CJ; Lee HY; Eum HL; Kim HS; Hong YP; Lee Y; Choe S; An CS; Choi SB
    Plant Physiol; 2010 Jan; 152(1):192-205. PubMed ID: 19915013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis.
    Mueller S; Hilbert B; Dueckershoff K; Roitsch T; Krischke M; Mueller MJ; Berger S
    Plant Cell; 2008 Mar; 20(3):768-85. PubMed ID: 18334669
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interference with plastome gene expression and Clp protease activity in Arabidopsis triggers a chloroplast unfolded protein response to restore protein homeostasis.
    Llamas E; Pulido P; Rodriguez-Concepcion M
    PLoS Genet; 2017 Sep; 13(9):e1007022. PubMed ID: 28937985
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cloning, Expression Characteristics of
    Liu M; Wang Z; Qin C; Cao H; Kong L; Liu T; Jiang S; Ma L; Liu X; Ren W; Ma W
    J Agric Food Chem; 2024 May; 72(20):11429-11437. PubMed ID: 38738769
    [No Abstract]   [Full Text] [Related]  

  • 13. CER16 Inhibits Post-Transcriptional Gene Silencing of
    Yang X; Feng T; Li S; Zhao H; Zhao S; Ma C; Jenks MA; Lü S
    Plant Physiol; 2020 Mar; 182(3):1211-1221. PubMed ID: 31941670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-Targeted Metabolomic Analysis of
    Cadena-Zamudio JD; Monribot-Villanueva JL; Pérez-Torres CA; Alatorre-Cobos F; Guerrero-Analco JA; Ibarra-Laclette E
    Metabolites; 2023 Sep; 13(9):. PubMed ID: 37755301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-Wide Association Study of Seed Morphology Traits in Senegalese Sorghum Cultivars.
    Ahn E; Botkin J; Ellur V; Lee Y; Poudel K; Prom LK; Magill C
    Plants (Basel); 2023 Jun; 12(12):. PubMed ID: 37375969
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of impaired steryl ester biosynthesis on tomato growth and developmental processes.
    Burciaga-Monge A; López-Tubau JM; Laibach N; Deng C; Ferrer A; Altabella T
    Front Plant Sci; 2022; 13():984100. PubMed ID: 36247562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Cloning and Functional Analysis of
    Tian L; Shi J; Yang L; Wei A
    Foods; 2022 Jun; 11(12):. PubMed ID: 35741944
    [No Abstract]   [Full Text] [Related]  

  • 18. How plants synthesize coenzyme Q.
    Xu JJ; Hu M; Yang L; Chen XY
    Plant Commun; 2022 Sep; 3(5):100341. PubMed ID: 35614856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Activation of the plant mevalonate pathway by extracellular ATP.
    Cho SH; Tóth K; Kim D; Vo PH; Lin CH; Handakumbura PP; Ubach AR; Evans S; Paša-Tolić L; Stacey G
    Nat Commun; 2022 Jan; 13(1):450. PubMed ID: 35064110
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Role of Membranes and Lipid-Protein Interactions in the Mg-Branch of Tetrapyrrole Biosynthesis.
    Solymosi K; Mysliwa-Kurdziel B
    Front Plant Sci; 2021; 12():663309. PubMed ID: 33995458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.