These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 27382177)
1. Grasses use an alternatively wired bHLH transcription factor network to establish stomatal identity. Raissig MT; Abrash E; Bettadapur A; Vogel JP; Bergmann DC Proc Natl Acad Sci U S A; 2016 Jul; 113(29):8326-31. PubMed ID: 27382177 [TBL] [Abstract][Full Text] [Related]
2. Expanded roles and divergent regulation of FAMA in Brachypodium and Arabidopsis stomatal development. McKown KH; Anleu Gil MX; Mair A; Xu SL; Raissig MT; Bergmann DC Plant Cell; 2023 Feb; 35(2):756-775. PubMed ID: 36440974 [TBL] [Abstract][Full Text] [Related]
3. Stomatal development in Arabidopsis and grasses: differences and commonalities. Serna L Int J Dev Biol; 2011; 55(1):5-10. PubMed ID: 21425077 [TBL] [Abstract][Full Text] [Related]
4. Orthologs of Arabidopsis thaliana stomatal bHLH genes and regulation of stomatal development in grasses. Liu T; Ohashi-Ito K; Bergmann DC Development; 2009 Jul; 136(13):2265-76. PubMed ID: 19502487 [TBL] [Abstract][Full Text] [Related]
5. Dual role of BdMUTE during stomatal development in the model grass Brachypodium distachyon. Spiegelhalder RP; Berg LS; Nunes TDG; Dörr M; Jesenofsky B; Lindner H; Raissig MT Development; 2024 Oct; 151(20):. PubMed ID: 39166983 [TBL] [Abstract][Full Text] [Related]
6. Genome-wide analysis of basic helix-loop-helix (bHLH) transcription factors in Brachypodium distachyon. Niu X; Guan Y; Chen S; Li H BMC Genomics; 2017 Aug; 18(1):619. PubMed ID: 28810832 [TBL] [Abstract][Full Text] [Related]
7. Sequence and function of basic helix-loop-helix proteins required for stomatal development in Arabidopsis are deeply conserved in land plants. MacAlister CA; Bergmann DC Evol Dev; 2011; 13(2):182-92. PubMed ID: 21410874 [TBL] [Abstract][Full Text] [Related]
9. Stomatal development: focusing on the grasses. Hepworth C; Caine RS; Harrison EL; Sloan J; Gray JE Curr Opin Plant Biol; 2018 Feb; 41():1-7. PubMed ID: 28826033 [TBL] [Abstract][Full Text] [Related]
10. Phosphorylation of Serine 186 of bHLH Transcription Factor SPEECHLESS Promotes Stomatal Development in Arabidopsis. Yang KZ; Jiang M; Wang M; Xue S; Zhu LL; Wang HZ; Zou JJ; Lee EK; Sack F; Le J Mol Plant; 2015 May; 8(5):783-95. PubMed ID: 25680231 [TBL] [Abstract][Full Text] [Related]
11. Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Li X; Duan X; Jiang H; Sun Y; Tang Y; Yuan Z; Guo J; Liang W; Chen L; Yin J; Ma H; Wang J; Zhang D Plant Physiol; 2006 Aug; 141(4):1167-84. PubMed ID: 16896230 [TBL] [Abstract][Full Text] [Related]
12. Down-Regulating the Expression of 53 Soybean Transcription Factor Genes Uncovers a Role for SPEECHLESS in Initiating Stomatal Cell Lineages during Embryo Development. Danzer J; Mellott E; Bui AQ; Le BH; Martin P; Hashimoto M; Perez-Lesher J; Chen M; Pelletier JM; Somers DA; Goldberg RB; Harada JJ Plant Physiol; 2015 Jul; 168(3):1025-35. PubMed ID: 25963149 [TBL] [Abstract][Full Text] [Related]
13. Arabidopsis stomatal initiation is controlled by MAPK-mediated regulation of the bHLH SPEECHLESS. Lampard GR; Macalister CA; Bergmann DC Science; 2008 Nov; 322(5904):1113-6. PubMed ID: 19008449 [TBL] [Abstract][Full Text] [Related]
14. The bHLH protein, MUTE, controls differentiation of stomata and the hydathode pore in Arabidopsis. Pillitteri LJ; Bogenschutz NL; Torii KU Plant Cell Physiol; 2008 Jun; 49(6):934-43. PubMed ID: 18450784 [TBL] [Abstract][Full Text] [Related]
15. Stomatal development in the grasses: lessons from models and crops (and crop models). McKown KH; Bergmann DC New Phytol; 2020 Sep; 227(6):1636-1648. PubMed ID: 31985072 [TBL] [Abstract][Full Text] [Related]
16. Evolution of the bHLH genes involved in stomatal development: implications for the expansion of developmental complexity of stomata in land plants. Ran JH; Shen TT; Liu WJ; Wang XQ PLoS One; 2013; 8(11):e78997. PubMed ID: 24244399 [TBL] [Abstract][Full Text] [Related]
18. Relationship between brassinosteroids and genes controlling stomatal production in the Arabidopsis hypocotyl. Fuentes S; Cañamero RC; Serna L Int J Dev Biol; 2012; 56(9):675-80. PubMed ID: 23124966 [TBL] [Abstract][Full Text] [Related]
19. Irreversible fate commitment in the Arabidopsis stomatal lineage requires a FAMA and RETINOBLASTOMA-RELATED module. Matos JL; Lau OS; Hachez C; Cruz-Ramírez A; Scheres B; Bergmann DC Elife; 2014 Oct; 3():. PubMed ID: 25303364 [TBL] [Abstract][Full Text] [Related]
20. Differentiation of Arabidopsis guard cells: analysis of the networks incorporating the basic helix-loop-helix transcription factor, FAMA. Hachez C; Ohashi-Ito K; Dong J; Bergmann DC Plant Physiol; 2011 Mar; 155(3):1458-72. PubMed ID: 21245191 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]