BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 27382417)

  • 1. Comparing structural fingerprints using a literature-based similarity benchmark.
    O'Boyle NM; Sayle RA
    J Cheminform; 2016; 8():36. PubMed ID: 27382417
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One molecular fingerprint to rule them all: drugs, biomolecules, and the metabolome.
    Capecchi A; Probst D; Reymond JL
    J Cheminform; 2020 Jun; 12(1):43. PubMed ID: 33431010
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Stereoselective virtual screening of the ZINC database using atom pair 3D-fingerprints.
    Awale M; Jin X; Reymond JL
    J Cheminform; 2015; 7():3. PubMed ID: 25750664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. jCompoundMapper: An open source Java library and command-line tool for chemical fingerprints.
    Hinselmann G; Rosenbaum L; Jahn A; Fechner N; Zell A
    J Cheminform; 2011 Jan; 3(1):3. PubMed ID: 21219648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large-scale similarity search profiling of ChEMBL compound data sets.
    Heikamp K; Bajorath J
    J Chem Inf Model; 2011 Aug; 51(8):1831-9. PubMed ID: 21728295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rendering conventional molecular fingerprints for virtual screening independent of molecular complexity and size effects.
    Nisius B; Bajorath J
    ChemMedChem; 2010 Jun; 5(6):859-68. PubMed ID: 20425878
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How do 2D fingerprints detect structurally diverse active compounds? Revealing compound subset-specific fingerprint features through systematic selection.
    Heikamp K; Bajorath J
    J Chem Inf Model; 2011 Sep; 51(9):2254-65. PubMed ID: 21793563
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduction and recombination of fingerprints of different design increase compound recall and the structural diversity of hits.
    Nisius B; Bajorath J
    Chem Biol Drug Des; 2010 Feb; 75(2):152-60. PubMed ID: 20028390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Support-vector-machine-based ranking significantly improves the effectiveness of similarity searching using 2D fingerprints and multiple reference compounds.
    Geppert H; Horváth T; Gärtner T; Wrobel S; Bajorath J
    J Chem Inf Model; 2008 Apr; 48(4):742-6. PubMed ID: 18318473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis and comparison of 2D fingerprints: insights into database screening performance using eight fingerprint methods.
    Duan J; Dixon SL; Lowrie JF; Sherman W
    J Mol Graph Model; 2010 Sep; 29(2):157-70. PubMed ID: 20579912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Similarity searching of chemical databases using atom environment descriptors (MOLPRINT 2D): evaluation of performance.
    Bender A; Mussa HY; Glen RC; Reiling S
    J Chem Inf Comput Sci; 2004; 44(5):1708-18. PubMed ID: 15446830
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving the search performance of extended connectivity fingerprints through activity-oriented feature filtering and application of a bit-density-dependent similarity function.
    Hu Y; Lounkine E; Bajorath J
    ChemMedChem; 2009 Apr; 4(4):540-8. PubMed ID: 19263458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Random reduction in fingerprint bit density improves compound recall in search calculations using complex reference molecules.
    Wang Y; Geppert H; Bajorath J
    Chem Biol Drug Des; 2008 Jun; 71(6):511-7. PubMed ID: 18466274
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An overview of molecular fingerprint similarity search in virtual screening.
    Muegge I; Mukherjee P
    Expert Opin Drug Discov; 2016; 11(2):137-48. PubMed ID: 26558489
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using Domain-Specific Fingerprints Generated Through Neural Networks to Enhance Ligand-Based Virtual Screening.
    Menke J; Koch O
    J Chem Inf Model; 2021 Feb; 61(2):664-675. PubMed ID: 33497572
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The chemfp project.
    Dalke A
    J Cheminform; 2019 Dec; 11(1):76. PubMed ID: 33430977
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Open-source platform to benchmark fingerprints for ligand-based virtual screening.
    Riniker S; Landrum GA
    J Cheminform; 2013 May; 5(1):26. PubMed ID: 23721588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Improving Measures of Chemical Structural Similarity Using Machine Learning on Chemical-Genetic Interactions.
    Safizadeh H; Simpkins SW; Nelson J; Li SC; Piotrowski JS; Yoshimura M; Yashiroda Y; Hirano H; Osada H; Yoshida M; Boone C; Myers CL
    J Chem Inf Model; 2021 Sep; 61(9):4156-4172. PubMed ID: 34318674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved Deep Learning Based Method for Molecular Similarity Searching Using Stack of Deep Belief Networks.
    Nasser M; Salim N; Hamza H; Saeed F; Rabiu I
    Molecules; 2020 Dec; 26(1):. PubMed ID: 33383976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Database fingerprint (DFP): an approach to represent molecular databases.
    Fernández-de Gortari E; García-Jacas CR; Martinez-Mayorga K; Medina-Franco JL
    J Cheminform; 2017; 9():9. PubMed ID: 28224019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.