These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 27382417)

  • 21. Introduction of a generally applicable method to estimate retrieval of active molecules for similarity searching using fingerprints.
    Vogt M; Bajorath J
    ChemMedChem; 2007 Sep; 2(9):1311-20. PubMed ID: 17562536
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relevance of feature combinations for similarity searching using general or activity class-directed molecular fingerprints.
    Lounkine E; Hu Y; Batista J; Bajorath J
    J Chem Inf Model; 2009 Mar; 49(3):561-70. PubMed ID: 19434896
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular fingerprint recombination: generating hybrid fingerprints for similarity searching from different fingerprint types.
    Nisius B; Bajorath J
    ChemMedChem; 2009 Nov; 4(11):1859-63. PubMed ID: 19714705
    [TBL] [Abstract][Full Text] [Related]  

  • 24. How similar are similarity searching methods? A principal component analysis of molecular descriptor space.
    Bender A; Jenkins JL; Scheiber J; Sukuru SC; Glick M; Davies JW
    J Chem Inf Model; 2009 Jan; 49(1):108-19. PubMed ID: 19123924
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Predicting the performance of fingerprint similarity searching.
    Vogt M; Bajorath J
    Methods Mol Biol; 2011; 672():159-73. PubMed ID: 20838968
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Extended similarity indices: the benefits of comparing more than two objects simultaneously. Part 2: speed, consistency, diversity selection.
    Miranda-Quintana RA; Rácz A; Bajusz D; Héberger K
    J Cheminform; 2021 Apr; 13(1):33. PubMed ID: 33892799
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Development of a fingerprint reduction approach for Bayesian similarity searching based on Kullback-Leibler divergence analysis.
    Nisius B; Vogt M; Bajorath J
    J Chem Inf Model; 2009 Jun; 49(6):1347-58. PubMed ID: 19480403
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Profile scaling increases the similarity search performance of molecular fingerprints containing numerical descriptors and structural keys.
    Xue L; Godden JW; Stahura FL; Bajorath J
    J Chem Inf Comput Sci; 2003; 43(4):1218-25. PubMed ID: 12870914
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of R-Group Fingerprints Based on the Local Landscape from an Attachment Point of a Molecular Structure.
    Tamura S; Miyao T; Funatsu K
    J Chem Inf Model; 2019 Jun; 59(6):2656-2663. PubMed ID: 31059251
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bit silencing in fingerprints enables the derivation of compound class-directed similarity metrics.
    Wang Y; Bajorath J
    J Chem Inf Model; 2008 Sep; 48(9):1754-9. PubMed ID: 18698839
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Anatomy of fingerprint search calculations on structurally diverse sets of active compounds.
    Godden JW; Stahura FL; Bajorath J
    J Chem Inf Model; 2005; 45(6):1812-9. PubMed ID: 16309288
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new ChEMBL dataset for the similarity-based target fishing engine FastTargetPred: Annotation of an exhaustive list of linear tetrapeptides.
    Tanwar S; Auberger P; Gillet G; DiPaola M; Tsaioun K; Villoutreix BO
    Data Brief; 2022 Jun; 42():108159. PubMed ID: 35496477
    [TBL] [Abstract][Full Text] [Related]  

  • 33. QSAR-derived affinity fingerprints (part 1): fingerprint construction and modeling performance for similarity searching, bioactivity classification and scaffold hopping.
    Škuta C; Cortés-Ciriano I; Dehaen W; Kříž P; van Westen GJP; Tetko IV; Bender A; Svozil D
    J Cheminform; 2020 May; 12(1):39. PubMed ID: 33431038
    [TBL] [Abstract][Full Text] [Related]  

  • 34. QSAR-derived affinity fingerprints (part 2): modeling performance for potency prediction.
    Cortés-Ciriano I; Škuta C; Bender A; Svozil D
    J Cheminform; 2020 Jun; 12(1):41. PubMed ID: 33431016
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Virtual drug screen schema based on multiview similarity integration and ranking aggregation.
    Kang H; Sheng Z; Zhu R; Huang Q; Liu Q; Cao Z
    J Chem Inf Model; 2012 Mar; 52(3):834-43. PubMed ID: 22332590
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Similarity-based virtual screening using 2D fingerprints.
    Willett P
    Drug Discov Today; 2006 Dec; 11(23-24):1046-53. PubMed ID: 17129822
    [TBL] [Abstract][Full Text] [Related]  

  • 37. mRAISE: an alternative algorithmic approach to ligand-based virtual screening.
    von Behren MM; Bietz S; Nittinger E; Rarey M
    J Comput Aided Mol Des; 2016 Aug; 30(8):583-94. PubMed ID: 27565795
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Condorcet and borda count fusion method for ligand-based virtual screening.
    Ahmed A; Saeed F; Salim N; Abdo A
    J Cheminform; 2014; 6():19. PubMed ID: 24883114
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ligand-based target prediction with signature fingerprints.
    Alvarsson J; Eklund M; Engkvist O; Spjuth O; Carlsson L; Wikberg JE; Noeske T
    J Chem Inf Model; 2014 Oct; 54(10):2647-53. PubMed ID: 25230336
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Why is Tanimoto index an appropriate choice for fingerprint-based similarity calculations?
    Bajusz D; Rácz A; Héberger K
    J Cheminform; 2015; 7():20. PubMed ID: 26052348
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.