These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 27382767)
21. In vitro and animal study of novel nano-hydroxyapatite/poly(epsilon-caprolactone) composite scaffolds fabricated by layer manufacturing process. Heo SJ; Kim SE; Wei J; Kim DH; Hyun YT; Yun HS; Kim HK; Yoon TR; Kim SH; Park SA; Shin JW; Shin JW Tissue Eng Part A; 2009 May; 15(5):977-89. PubMed ID: 18803480 [TBL] [Abstract][Full Text] [Related]
22. Electrospun thermosensitive hydrogel scaffold for enhanced chondrogenesis of human mesenchymal stem cells. Brunelle AR; Horner CB; Low K; Ico G; Nam J Acta Biomater; 2018 Jan; 66():166-176. PubMed ID: 29128540 [TBL] [Abstract][Full Text] [Related]
23. Biomimetic fabrication of a three-level hierarchical calcium phosphate/collagen/hydroxyapatite scaffold for bone tissue engineering. Zhou C; Ye X; Fan Y; Ma L; Tan Y; Qing F; Zhang X Biofabrication; 2014 Sep; 6(3):035013. PubMed ID: 24873777 [TBL] [Abstract][Full Text] [Related]
24. Aligned poly(L-lactic-co-e-caprolactone) electrospun microfibers and knitted structure: a novel composite scaffold for ligament tissue engineering. Vaquette C; Kahn C; Frochot C; Nouvel C; Six JL; De Isla N; Luo LH; Cooper-White J; Rahouadj R; Wang X J Biomed Mater Res A; 2010 Sep; 94(4):1270-82. PubMed ID: 20694995 [TBL] [Abstract][Full Text] [Related]
25. A novel route in bone tissue engineering: magnetic biomimetic scaffolds. Bock N; Riminucci A; Dionigi C; Russo A; Tampieri A; Landi E; Goranov VA; Marcacci M; Dediu V Acta Biomater; 2010 Mar; 6(3):786-96. PubMed ID: 19788946 [TBL] [Abstract][Full Text] [Related]
26. Large defect-tailored composite scaffolds for in vivo bone regeneration. Ronca A; Guarino V; Raucci MG; Salamanna F; Martini L; Zeppetelli S; Fini M; Kon E; Filardo G; Marcacci M; Ambrosio L J Biomater Appl; 2014 Nov; 29(5):715-27. PubMed ID: 24951457 [TBL] [Abstract][Full Text] [Related]
27. Shish-kebab-structured poly(ε-caprolactone) nanofibers hierarchically decorated with chitosan-poly(ε-caprolactone) copolymers for bone tissue engineering. Jing X; Mi HY; Wang XC; Peng XF; Turng LS ACS Appl Mater Interfaces; 2015 Apr; 7(12):6955-65. PubMed ID: 25761418 [TBL] [Abstract][Full Text] [Related]
28. Clinoptilolite/PCL-PEG-PCL composite scaffolds for bone tissue engineering applications. Pazarçeviren E; Erdemli Ö; Keskin D; Tezcaner A J Biomater Appl; 2017 Mar; 31(8):1148-1168. PubMed ID: 27881642 [TBL] [Abstract][Full Text] [Related]
29. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications. Stefani I; Cooper-White JJ Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522 [TBL] [Abstract][Full Text] [Related]
30. Three-Dimension-Printed Porous Poly(Propylene Fumarate) Scaffolds with Delayed rhBMP-2 Release for Anterior Cruciate Ligament Graft Fixation. Parry JA; Olthof MG; Shogren KL; Dadsetan M; Van Wijnen A; Yaszemski M; Kakar S Tissue Eng Part A; 2017 Apr; 23(7-8):359-365. PubMed ID: 28081675 [TBL] [Abstract][Full Text] [Related]
31. Biomimetic composite coating on rapid prototyped scaffolds for bone tissue engineering. Arafat MT; Lam CX; Ekaputra AK; Wong SY; Li X; Gibson I Acta Biomater; 2011 Feb; 7(2):809-20. PubMed ID: 20849985 [TBL] [Abstract][Full Text] [Related]
32. Role of scaffold mean pore size in meniscus regeneration. Zhang ZZ; Jiang D; Ding JX; Wang SJ; Zhang L; Zhang JY; Qi YS; Chen XS; Yu JK Acta Biomater; 2016 Oct; 43():314-326. PubMed ID: 27481291 [TBL] [Abstract][Full Text] [Related]
33. Superior Tissue Evolution in Slow-Degrading Scaffolds for Valvular Tissue Engineering. Brugmans MM; Soekhradj-Soechit RS; van Geemen D; Cox M; Bouten CV; Baaijens FP; Driessen-Mol A Tissue Eng Part A; 2016 Jan; 22(1-2):123-32. PubMed ID: 26466917 [TBL] [Abstract][Full Text] [Related]
34. Fabrication of novel high performance ductile poly(lactic acid) nanofiber scaffold coated with poly(vinyl alcohol) for tissue engineering applications. Abdal-Hay A; Hussein KH; Casettari L; Khalil KA; Hamdy AS Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():143-150. PubMed ID: 26706517 [TBL] [Abstract][Full Text] [Related]
35. Heparinized PLLA/PLCL nanofibrous scaffold for potential engineering of small-diameter blood vessel: tunable elasticity and anticoagulation property. Wang W; Hu J; He C; Nie W; Feng W; Qiu K; Zhou X; Gao Y; Wang G J Biomed Mater Res A; 2015 May; 103(5):1784-97. PubMed ID: 25196988 [TBL] [Abstract][Full Text] [Related]
36. Porogen-induced surface modification of nano-fibrous poly(L-lactic acid) scaffolds for tissue engineering. Liu X; Won Y; Ma PX Biomaterials; 2006 Jul; 27(21):3980-7. PubMed ID: 16580063 [TBL] [Abstract][Full Text] [Related]
37. Collagen/silk fibroin composite scaffold incorporated with PLGA microsphere for cartilage repair. Wang J; Yang Q; Cheng N; Tao X; Zhang Z; Sun X; Zhang Q Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():705-11. PubMed ID: 26838900 [TBL] [Abstract][Full Text] [Related]
38. Effects of Nano-hydroxyapatite/Poly(DL-lactic-co-glycolic acid) Microsphere-Based Composite Scaffolds on Repair of Bone Defects: Evaluating the Role of Nano-hydroxyapatite Content. He S; Lin KF; Sun Z; Song Y; Zhao YN; Wang Z; Bi L; Liu J Artif Organs; 2016 Jul; 40(7):E128-35. PubMed ID: 27378617 [TBL] [Abstract][Full Text] [Related]