BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 27382995)

  • 1. Anatomical traits related to stress in high density populations of Typha angustifolia L. (Typhaceae).
    Corrêa FF; Pereira MP; Madail RH; Santos BR; Barbosa S; Castro EM; Pereira FJ
    Braz J Biol; 2017 Mar; 77(1):52-59. PubMed ID: 27382995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Root anatomy, growth, and development of Typha domingensis Pers. (Typhaceae) and their relationship with cadmium absorption, accumulation, and tolerance.
    de Oliveira JPV; Pereira MP; Duarte VP; Corrêa FF; de Castro EM; Pereira FJ
    Environ Sci Pollut Res Int; 2022 Mar; 29(13):19878-19889. PubMed ID: 35080729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cadmium tolerance of Typha domingensis Pers. (Typhaceae) as related to growth and leaf morphophysiology.
    Oliveira JPV; Pereira MP; Duarte VP; Corrêa FF; Castro EM; Pereira FJ
    Braz J Biol; 2018 Aug; 78(3):509-516. PubMed ID: 29995113
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative analysis of element concentrations and translocation in three wetland congener plants: Typha domingensis, Typha latifolia and Typha angustifolia.
    Bonanno G; Cirelli GL
    Ecotoxicol Environ Saf; 2017 Sep; 143():92-101. PubMed ID: 28525817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epifluorescent and histochemical aspects of shoot anatomy of Typha latifolia L., Typha angustifolia L. and Typha glauca Godr.
    McManus HA; Seago JL; Marsh LC
    Ann Bot; 2002 Oct; 90(4):489-93. PubMed ID: 12324273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Can differences in phosphorus uptake kinetics explain the distribution of cattail and sawgrass in the Florida Everglades?
    Brix H; Lorenzen B; Mendelssohn IA; McKee KL; Miao S
    BMC Plant Biol; 2010 Feb; 10():23. PubMed ID: 20141632
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [A Contrastive Study on Salt-alkaline Resistance and Removal Efficiency of Nitrogen and Phosphorus by Phragmites australis and Typha angustifolia in Coastal Estuary Area].
    Chen YY; Sun P; Chen GL; Wang NN
    Huan Jing Ke Xue; 2015 Apr; 36(4):1489-96. PubMed ID: 26164931
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal variation of heavy metal accumulation and translocation characteristics of narrow-leaved cattail (Typha angustifolia L.).
    Duman F; Urey E; Koca FD
    Environ Sci Pollut Res Int; 2015 Nov; 22(22):17886-96. PubMed ID: 26162443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Localization and quantification of Pb and nutrients in Typha latifolia by micro-PIXE.
    Lyubenova L; Pongrac P; Vogel-Mikuš K; Mezek GK; Vavpetič P; Grlj N; Kump P; Nečemer M; Regvar M; Pelicon P; Schröder P
    Metallomics; 2012 Apr; 4(4):333-41. PubMed ID: 22370692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptability of Typha domingensis to high pH and salinity.
    Mufarrege MM; Di Luca GA; Hadad HR; Maine MA
    Ecotoxicology; 2011 Mar; 20(2):457-65. PubMed ID: 21287266
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lignified and nonlignified fiber cables in the lacunae of Typha angustifolia.
    Witztum A; Wayne R
    Protoplasma; 2016 Nov; 253(6):1589-1592. PubMed ID: 26608211
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phytoremediation of Cd, Cr, Cu, Mn, Fe, Ni, Pb and Zn from aqueous solution using Phragmites cummunis, Typha angustifolia and Cyperus esculentus.
    Chandra R; Yadav S
    Int J Phytoremediation; 2011 Jul; 13(6):580-91. PubMed ID: 21972504
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic and clonal diversity of two cattail species, Typha latifolia and T. angustifolia (Typhaceae), from Ukraine.
    Tsyusko OV; Smith MH; Sharitz RR; Glenn TC
    Am J Bot; 2005 Jul; 92(7):1161-9. PubMed ID: 21646138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased lead and cadmium tolerance of Typha angustifolia from Huaihe River is associated with enhanced phytochelatin synthesis and improved antioxidative capacity.
    Liu Y; Chen J; Lu S; Yang L; Qian J; Cao S
    Environ Technol; 2016 Nov; 37(21):2743-9. PubMed ID: 26959972
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of cadmium, chromium and lead on growth, metal uptake and antioxidative capacity in Typha angustifolia.
    Bah AM; Dai H; Zhao J; Sun H; Cao F; Zhang G; Wu F
    Biol Trace Elem Res; 2011 Jul; 142(1):77-92. PubMed ID: 20552296
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of seasonal variation to the population growth and ecophysiology of Typha domingensis (Typhaceae).
    da Cunha Cruz Y; Scarpa ALM; Díaz AS; Pereira MP; de Castro EM; Pereira FJ
    J Plant Res; 2023 Sep; 136(5):665-678. PubMed ID: 37219754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Desiccation of sediments affects assimilate transport within aquatic plants and carbon transfer to microorganisms.
    von Rein I; Kayler ZE; Premke K; Gessler A
    Plant Biol (Stuttg); 2016 Nov; 18(6):947-961. PubMed ID: 27465780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fibre cables in the lacunae of Typha leaves contribute to a tensegrity structure.
    Witztum A; Wayne R
    Ann Bot; 2014 Apr; 113(5):789-97. PubMed ID: 24532647
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Taxonomic structure and function of seed-inhabiting bacterial microbiota from common reed (Phragmites australis) and narrowleaf cattail (Typha angustifolia L.).
    Gao T; Shi XY
    Arch Microbiol; 2018 Aug; 200(6):869-876. PubMed ID: 29455240
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Different combinations of morpho-physiological traits are responsible for tolerance to drought in wild tomatoes Solanum chilense and Solanum peruvianum.
    Tapia G; Méndez J; Inostroza L
    Plant Biol (Stuttg); 2016 May; 18(3):406-16. PubMed ID: 26499789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.