These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 27383367)

  • 1. Molecular mechanics of the cooperative adsorption of a Pro-Hyp-Gly tripeptide on a hydroxylated rutile TiO2(110) surface mediated by calcium ions.
    Zheng T; Wu C; Chen M; Zhang Y; Cummings PT
    Phys Chem Chem Phys; 2016 Jul; 18(29):19757-64. PubMed ID: 27383367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of arginine-glycine-aspartate tripeptide onto negatively charged rutile (110) mediated by cations: the effect of surface hydroxylation.
    Wu C; Chen M; Skelton AA; Cummings PT; Zheng T
    ACS Appl Mater Interfaces; 2013 Apr; 5(7):2567-79. PubMed ID: 23461392
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling the interaction between integrin-binding peptide (RGD) and rutile surface: the effect of cation mediation on Asp adsorption.
    Wu C; Skelton AA; Chen M; Vlček L; Cummings PT
    Langmuir; 2012 Feb; 28(5):2799-811. PubMed ID: 22220570
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of calcium ions on peptide adsorption at the aqueous rutile titania (110) interface.
    Sultan AM; Hughes ZE; Walsh TR
    Biointerphases; 2018 Aug; 13(6):06D403. PubMed ID: 30180596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RGD tripeptide onto perfect and grooved rutile surfaces in aqueous solution: adsorption behaviors and dynamics.
    Chen M; Wu C; Song D; Li K
    Phys Chem Chem Phys; 2010 Jan; 12(2):406-15. PubMed ID: 20023818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adsorption of tripeptide RGD on rutile TiO(2) nanotopography surface in aqueous solution.
    Song DP; Chen MJ; Liang YC; Bai QS; Chen JX; Zheng XF
    Acta Biomater; 2010 Feb; 6(2):684-94. PubMed ID: 19643209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time Transient of Calcium and Phosphate Ion Adsorption by Rutile Crystal Facets in Hanks' Solution Characterized by XPS.
    Hiji A; Hanawa T; Yokoi T; Chen P; Ashida M; Kawashita M
    Langmuir; 2021 Mar; 37(12):3597-3604. PubMed ID: 33749278
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular-Level Understanding of the Influence of Ions and Water on HMGB1 Adsorption Induced by Surface Hydroxylation of Titanium Implants.
    Ranathunga DTS; Arteaga A; Biguetti CC; Rodrigues DC; Nielsen SO
    Langmuir; 2021 Aug; 37(33):10100-10114. PubMed ID: 34370950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption of glutamic acid on clean and hydroxylated rutile TiO
    Carraro G; Smerieri M; Passaglia S; Bracco G; Vattuone L; Rocca M; Cossaro A; Verdini A; Floreano L; Savio L
    J Phys Condens Matter; 2022 Apr; 34(27):. PubMed ID: 35354128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. IR and quantum-chemical studies of carboxylic acid and glycine adsorption on rutile TiO2 nanoparticles.
    Ojamäe L; Aulin C; Pedersen H; Käll PO
    J Colloid Interface Sci; 2006 Apr; 296(1):71-8. PubMed ID: 16165144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amino acid adsorption on anatase (101) surface at vacuum and aqueous solution: a density functional study.
    Liu L; Li K; Chen X; Liang X; Zheng Y; Li L
    J Mol Model; 2018 Mar; 24(4):107. PubMed ID: 29600436
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of grooves on adsorption of RGD tripeptide onto rutile TiO(2) (110) surface.
    Chen M; Wu C; Song D; Dong W; Li K
    J Mater Sci Mater Med; 2009 Sep; 20(9):1831-8. PubMed ID: 19418205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Binding affinities of amino acid analogues at the charged aqueous titania interface: implications for titania-binding peptides.
    Sultan AM; Hughes ZE; Walsh TR
    Langmuir; 2014 Nov; 30(44):13321-9. PubMed ID: 25317483
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Peptide-TiO2 surface interaction in solution by ab initio and molecular dynamics simulations.
    Carravetta V; Monti S
    J Phys Chem B; 2006 Mar; 110(12):6160-9. PubMed ID: 16553430
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics at a Peptide-TiO
    Polimeni M; Petridis L; Smith JC; Arcangeli C
    J Phys Chem B; 2017 Sep; 121(38):8869-8877. PubMed ID: 28851213
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Canonical, deprotonated, or zwitterionic? II. A computational study on amino acid interaction with the TiO
    Pantaleone S; Rimola A; Sodupe M
    Phys Chem Chem Phys; 2020 Aug; 22(29):16862-16876. PubMed ID: 32666992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability studies for titanium dioxide nanoparticles upon adsorption of Suwannee River humic and fulvic acids and natural organic matter.
    Erhayem M; Sohn M
    Sci Total Environ; 2014 Jan; 468-469():249-57. PubMed ID: 24035980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adsorption of glycosaminoglycans to commercially pure titanium.
    Collis JJ; Embery G
    Biomaterials; 1992; 13(8):548-52. PubMed ID: 1633229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. First-principles and Molecular Dynamics simulation studies of functionalization of Au
    Darvish Ganji M; Tavassoli Larijani H; Alamol-Hoda R; Mehdizadeh M
    Sci Rep; 2018 Jul; 8(1):11400. PubMed ID: 30061669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A density functional theory study of the interaction of collagen peptides with hydroxyapatite surfaces.
    Almora-Barrios N; de Leeuw NH
    Langmuir; 2010 Sep; 26(18):14535-42. PubMed ID: 20731400
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.