These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 27383421)

  • 1. Coupling volume-excluding compartment-based models of diffusion at different scales: Voronoi and pseudo-compartment approaches.
    Taylor PR; Baker RE; Simpson MJ; Yates CA
    J R Soc Interface; 2016 Jul; 13(120):. PubMed ID: 27383421
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The pseudo-compartment method for coupling partial differential equation and compartment-based models of diffusion.
    Yates CA; Flegg MB
    J R Soc Interface; 2015 May; 12(106):. PubMed ID: 25904527
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconciling transport models across scales: The role of volume exclusion.
    Taylor PR; Yates CA; Simpson MJ; Baker RE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Oct; 92(4):040701. PubMed ID: 26565150
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The blending region hybrid framework for the simulation of stochastic reaction-diffusion processes.
    Yates CA; George A; Jordana A; Smith CA; Duncan AB; Zygalakis KC
    J R Soc Interface; 2020 Oct; 17(171):20200563. PubMed ID: 33081647
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiscale Stochastic Reaction-Diffusion Algorithms Combining Markov Chain Models with Stochastic Partial Differential Equations.
    Kang HW; Erban R
    Bull Math Biol; 2019 Aug; 81(8):3185-3213. PubMed ID: 31165406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The auxiliary region method: a hybrid method for coupling PDE- and Brownian-based dynamics for reaction-diffusion systems.
    Smith CA; Yates CA
    R Soc Open Sci; 2018 Aug; 5(8):180920. PubMed ID: 30225082
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stochastic Turing patterns: analysis of compartment-based approaches.
    Cao Y; Erban R
    Bull Math Biol; 2014 Dec; 76(12):3051-69. PubMed ID: 25421150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Representability and Dynamical Consistency in Coarse-Grained Models.
    Palma Banos M; Popov AV; Hernandez R
    J Phys Chem B; 2024 Feb; 128(6):1506-1514. PubMed ID: 38315661
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid algorithm for coupling partial differential equation and compartment-based dynamics.
    Harrison JU; Yates CA
    J R Soc Interface; 2016 Sep; 13(122):. PubMed ID: 27628171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On developing coarse-grained models for biomolecular simulation: a review.
    Riniker S; Allison JR; van Gunsteren WF
    Phys Chem Chem Phys; 2012 Sep; 14(36):12423-30. PubMed ID: 22678152
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone.
    Murarka RK; Liwo A; Scheraga HA
    J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coarse-graining molecular dynamics: stochastic models with non-Gaussian force distributions.
    Erban R
    J Math Biol; 2020 Jan; 80(1-2):457-479. PubMed ID: 31541299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hybrid approaches for multiple-species stochastic reaction-diffusion models.
    Spill F; Guerrero P; Alarcon T; Maini PK; Byrne H
    J Comput Phys; 2015 Oct; 299():429-445. PubMed ID: 26478601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Discrete and continuous models for tissue growth and shrinkage.
    Yates CA
    J Theor Biol; 2014 Jun; 350():37-48. PubMed ID: 24512915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Power spectra methods for a stochastic description of diffusion on deterministically growing domains.
    Woolley TE; Baker RE; Gaffney EA; Maini PK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Aug; 84(2 Pt 1):021915. PubMed ID: 21929028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reliable and efficient parameter estimation using approximate continuum limit descriptions of stochastic models.
    Simpson MJ; Baker RE; Buenzli PR; Nicholson R; Maclaren OJ
    J Theor Biol; 2022 Sep; 549():111201. PubMed ID: 35752285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The two-regime method for optimizing stochastic reaction-diffusion simulations.
    Flegg MB; Chapman SJ; Erban R
    J R Soc Interface; 2012 May; 9(70):859-68. PubMed ID: 22012973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Importance of the Voronoi domain partition for position-jump reaction-diffusion processes on nonuniform rectilinear lattices.
    Yates CA; Baker RE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):054701. PubMed ID: 24329390
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Partial mean-field model for neurotransmission dynamics.
    Montefusco A; Helfmann L; Okunola T; Winkelmann S; Schütte C
    Math Biosci; 2024 Mar; 369():109143. PubMed ID: 38220067
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.