These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
260 related articles for article (PubMed ID: 27383600)
1. Spontaneous Release Regulates Synaptic Scaling in the Embryonic Spinal Network In Vivo. Garcia-Bereguiain MA; Gonzalez-Islas C; Lindsly C; Wenner P J Neurosci; 2016 Jul; 36(27):7268-82. PubMed ID: 27383600 [TBL] [Abstract][Full Text] [Related]
2. Activity blockade and GABAA receptor blockade produce synaptic scaling through chloride accumulation in embryonic spinal motoneurons and interneurons. Lindsly C; Gonzalez-Islas C; Wenner P PLoS One; 2014; 9(4):e94559. PubMed ID: 24733046 [TBL] [Abstract][Full Text] [Related]
3. In vivo synaptic scaling is mediated by GluA2-lacking AMPA receptors in the embryonic spinal cord. Garcia-Bereguiain MA; Gonzalez-Islas C; Lindsly C; Butler E; Hill AW; Wenner P J Neurosci; 2013 Apr; 33(16):6791-9. PubMed ID: 23595738 [TBL] [Abstract][Full Text] [Related]
4. GABAergic synaptic scaling in embryonic motoneurons is mediated by a shift in the chloride reversal potential. Gonzalez-Islas C; Chub N; Garcia-Bereguiain MA; Wenner P J Neurosci; 2010 Sep; 30(39):13016-20. PubMed ID: 20881119 [TBL] [Abstract][Full Text] [Related]
5. The Uniform and Nonuniform Nature of Slow and Rapid Scaling in Embryonic Motoneurons. Pekala D; Wenner P J Neurosci; 2022 Feb; 42(7):1224-1234. PubMed ID: 34965976 [TBL] [Abstract][Full Text] [Related]
6. Spontaneous network activity in the embryonic spinal cord regulates AMPAergic and GABAergic synaptic strength. Gonzalez-Islas C; Wenner P Neuron; 2006 Feb; 49(4):563-75. PubMed ID: 16476665 [TBL] [Abstract][Full Text] [Related]
7. Tonic and transient endocannabinoid regulation of AMPAergic miniature postsynaptic currents and homeostatic plasticity in embryonic motor networks. Gonzalez-Islas C; Garcia-Bereguiain MA; Wenner P J Neurosci; 2012 Sep; 32(39):13597-607. PubMed ID: 23015449 [TBL] [Abstract][Full Text] [Related]
8. Homeostatic synaptic plasticity in developing spinal networks driven by excitatory GABAergic currents. Wenner P Neuropharmacology; 2014 Mar; 78():55-62. PubMed ID: 23727439 [TBL] [Abstract][Full Text] [Related]
9. Regulation of synaptic scaling by action potential-independent miniature neurotransmission. Gonzalez-Islas C; Bülow P; Wenner P J Neurosci Res; 2018 Mar; 96(3):348-353. PubMed ID: 28782263 [TBL] [Abstract][Full Text] [Related]
10. Compensatory changes in cellular excitability, not synaptic scaling, contribute to homeostatic recovery of embryonic network activity. Wilhelm JC; Rich MM; Wenner P Proc Natl Acad Sci U S A; 2009 Apr; 106(16):6760-5. PubMed ID: 19346492 [TBL] [Abstract][Full Text] [Related]
11. Tonic nicotinic transmission enhances spinal GABAergic presynaptic release and the frequency of spontaneous network activity. Gonzalez-Islas C; Garcia-Bereguiain MA; O'Flaherty B; Wenner P Dev Neurobiol; 2016 Mar; 76(3):298-312. PubMed ID: 26061781 [TBL] [Abstract][Full Text] [Related]
12. Acetylcholine controls GABA-, glutamate-, and glycine-dependent giant depolarizing potentials that govern spontaneous motoneuron activity at the onset of synaptogenesis in the mouse embryonic spinal cord. Czarnecki A; Le Corronc H; Rigato C; Le Bras B; Couraud F; Scain AL; Allain AE; Mouffle C; Bullier E; Mangin JM; Branchereau P; Legendre P J Neurosci; 2014 Apr; 34(18):6389-404. PubMed ID: 24790209 [TBL] [Abstract][Full Text] [Related]
13. GABAA transmission is a critical step in the process of triggering homeostatic increases in quantal amplitude. Wilhelm JC; Wenner P Proc Natl Acad Sci U S A; 2008 Aug; 105(32):11412-7. PubMed ID: 18678897 [TBL] [Abstract][Full Text] [Related]
14. GABAergic synaptic scaling is triggered by changes in spiking activity rather than AMPA receptor activation. Gonzalez-Islas C; Sabra Z; Fong MF; Yilmam P; Au Yong N; Engisch K; Wenner P Elife; 2024 Jun; 12():. PubMed ID: 38941139 [TBL] [Abstract][Full Text] [Related]
15. Blockade and recovery of spontaneous rhythmic activity after application of neurotransmitter antagonists to spinal networks of the chick embryo. Chub N; O'Donovan MJ J Neurosci; 1998 Jan; 18(1):294-306. PubMed ID: 9412508 [TBL] [Abstract][Full Text] [Related]
16. Homeostatic Regulation of Spike Rate within Bursts in Two Distinct Preparations. Lakhani A; Gonzalez-Islas C; Sabra Z; Au Yong N; Wenner P eNeuro; 2024 Sep; 11(9):. PubMed ID: 39160070 [TBL] [Abstract][Full Text] [Related]
17. Pharmacological manipulation of GABA-driven activity in ovo disrupts the development of dendritic morphology but not the maturation of spinal cord network activity. Yoon YJ; Gokin AP; Martin-Caraballo M Neural Dev; 2010 Apr; 5():11. PubMed ID: 20377848 [TBL] [Abstract][Full Text] [Related]
18. Persistent Sodium Current Drives Excitability of Immature Renshaw Cells in Early Embryonic Spinal Networks. Boeri J; Le Corronc H; Lejeune FX; Le Bras B; Mouffle C; Angelim MKSC; Mangin JM; Branchereau P; Legendre P; Czarnecki A J Neurosci; 2018 Aug; 38(35):7667-7682. PubMed ID: 30012693 [TBL] [Abstract][Full Text] [Related]
19. Upward synaptic scaling is dependent on neurotransmission rather than spiking. Fong MF; Newman JP; Potter SM; Wenner P Nat Commun; 2015 Mar; 6():6339. PubMed ID: 25751516 [TBL] [Abstract][Full Text] [Related]
20. Homeostatic Recovery of Embryonic Spinal Activity Initiated by Compensatory Changes in Resting Membrane Potential. Gonzalez-Islas C; Garcia-Bereguiain MA; Wenner P eNeuro; 2020; 7(4):. PubMed ID: 32540879 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]