These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 27384125)

  • 1. Multistable Shape-Reconfigurable Architected Materials.
    Haghpanah B; Salari-Sharif L; Pourrajab P; Hopkins J; Valdevit L
    Adv Mater; 2016 Sep; 28(36):7915-7920. PubMed ID: 27384125
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viscoelastic multistable architected materials with temperature-dependent snapping sequence.
    Che K; Yuan C; Qi HJ; Meaud J
    Soft Matter; 2018 Mar; 14(13):2492-2499. PubMed ID: 29513315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programmable Multistable Perforated Shellular.
    Shi J; Mofatteh H; Mirabolghasemi A; Desharnais G; Akbarzadeh A
    Adv Mater; 2021 Oct; 33(42):e2102423. PubMed ID: 34467581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multistable Architected Materials for Trapping Elastic Strain Energy.
    Shan S; Kang SH; Raney JR; Wang P; Fang L; Candido F; Lewis JA; Bertoldi K
    Adv Mater; 2015 Aug; 27(29):4296-301. PubMed ID: 26088462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Guided transition waves in multistable mechanical metamaterials.
    Jin L; Khajehtourian R; Mueller J; Rafsanjani A; Tournat V; Bertoldi K; Kochmann DM
    Proc Natl Acad Sci U S A; 2020 Feb; 117(5):2319-2325. PubMed ID: 31969454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rational design of reconfigurable prismatic architected materials.
    Overvelde JT; Weaver JC; Hoberman C; Bertoldi K
    Nature; 2017 Jan; 541(7637):347-352. PubMed ID: 28102254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D-Printing Damage-Tolerant Architected Metallic Materials with Shape Recoverability via Special Deformation Design of Constituent Material.
    Xiong Z; Li M; Hao S; Liu Y; Cui L; Yang H; Cui C; Jiang D; Yang Y; Lei H; Zhang Y; Ren Y; Zhang X; Li J
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):39915-39924. PubMed ID: 34396781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Magnetic Dynamic Polymers for Modular Assembling and Reconfigurable Morphing Architectures.
    Kuang X; Wu S; Ze Q; Yue L; Jin Y; Montgomery SM; Yang F; Qi HJ; Zhao R
    Adv Mater; 2021 Jul; 33(30):e2102113. PubMed ID: 34146361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature-Responsive Multistable Metamaterials.
    Korpas LM; Yin R; Yasuda H; Raney JR
    ACS Appl Mater Interfaces; 2021 Jul; 13(26):31163-31170. PubMed ID: 34164975
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shape-morphing architected sheets with non-periodic cut patterns.
    Celli P; McMahan C; Ramirez B; Bauhofer A; Naify C; Hofmann D; Audoly B; Daraio C
    Soft Matter; 2018 Dec; 14(48):9744-9749. PubMed ID: 30511736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Multiscale Analysis on the Superelasticity Behavior of Architected Shape Memory Alloy Materials.
    Xu R; Bouby C; Zahrouni H; Ben Zineb T; Hu H; Potier-Ferry M
    Materials (Basel); 2018 Sep; 11(9):. PubMed ID: 30227627
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tunable Energy Absorption Characteristics of Architected Honeycombs Enabled via Additive Manufacturing.
    Kumar S; Ubaid J; Abishera R; Schiffer A; Deshpande VS
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42549-42560. PubMed ID: 31566942
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Designing Shape Morphing Behavior through Local Programming of Mechanical Metamaterials.
    Wenz F; Schmidt I; Leichner A; Lichti T; Baumann S; Andrae H; Eberl C
    Adv Mater; 2021 Sep; 33(37):e2008617. PubMed ID: 34338367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Damage-tolerant architected materials inspired by crystal microstructure.
    Pham MS; Liu C; Todd I; Lertthanasarn J
    Nature; 2019 Jan; 565(7739):305-311. PubMed ID: 30651615
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Soft Adaptive Mechanical Metamaterials.
    Khajehtourian R; Kochmann DM
    Front Robot AI; 2021; 8():673478. PubMed ID: 34012982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inverse design of 3D reconfigurable curvilinear modular origami structures using geometric and topological reconstructions.
    Xiao K; Liang Z; Zou B; Zhou X; Ju J
    Nat Commun; 2022 Dec; 13(1):7474. PubMed ID: 36463271
    [TBL] [Abstract][Full Text] [Related]  

  • 17. 3D architected temperature-tolerant organohydrogels with ultra-tunable energy absorption.
    Surjadi JU; Zhou Y; Wang T; Yang Y; Kai JJ; Lu Y; Wang Z
    iScience; 2021 Jul; 24(7):102789. PubMed ID: 34278275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Folding at the Microscale: Enabling Multifunctional 3D Origami-Architected Metamaterials.
    Lin Z; Novelino LS; Wei H; Alderete NA; Paulino GH; Espinosa HD; Krishnaswamy S
    Small; 2020 Sep; 16(35):e2002229. PubMed ID: 32715617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compliant rolling-contact architected materials for shape reconfigurability.
    Shaw LA; Chizari S; Dotson M; Song Y; Hopkins JB
    Nat Commun; 2018 Nov; 9(1):4594. PubMed ID: 30389929
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Non-Auxetic Mechanical Metamaterials.
    de Jonge CP; Kolken HMA; Zadpoor AA
    Materials (Basel); 2019 Feb; 12(4):. PubMed ID: 30791595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.