These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 27384129)

  • 21. [Etravirine: genetic barrier and resistance development].
    Llibre JM; Santos JR; Clotet B
    Enferm Infecc Microbiol Clin; 2009 Dec; 27 Suppl 2():32-9. PubMed ID: 20116626
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The visualCMAT: A web-server to select and interpret correlated mutations/co-evolving residues in protein families.
    Suplatov D; Sharapova Y; Timonina D; Kopylov K; Švedas V
    J Bioinform Comput Biol; 2018 Apr; 16(2):1840005. PubMed ID: 29361894
    [TBL] [Abstract][Full Text] [Related]  

  • 23. INPS: predicting the impact of non-synonymous variations on protein stability from sequence.
    Fariselli P; Martelli PL; Savojardo C; Casadio R
    Bioinformatics; 2015 Sep; 31(17):2816-21. PubMed ID: 25957347
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Absolute Alchemical Free Energy Calculations for Ligand Binding: A Beginner's Guide.
    Aldeghi M; Bluck JP; Biggin PC
    Methods Mol Biol; 2018; 1762():199-232. PubMed ID: 29594774
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of discrepancies in the interpretation of antiretroviral drug resistance results in HIV-1 infected patients of Basque Country, Spain.
    Muñoz M; Carmona R; Pérez-Alvarez L; Cilla G; Suarez MD; Delgado E; Contreras G; Corral J; de Goicoetxea MJ; Medrano L; Lezaún MJ; Nájera R;
    J Clin Virol; 2005 Jul; 33(3):224-9. PubMed ID: 15911444
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Large-scale prediction of binding affinity in protein-small ligand complexes: the PRODIGY-LIG web server.
    Vangone A; Schaarschmidt J; Koukos P; Geng C; Citro N; Trellet ME; Xue LC; Bonvin AMJJ
    Bioinformatics; 2019 May; 35(9):1585-1587. PubMed ID: 31051038
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of HIV Drug Resistance by Combining Sequence and Structural Properties.
    Khalid Z; Sezerman OU
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(3):966-973. PubMed ID: 27992346
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MEICPS: substitution mutations to engineer intracellular protein stability.
    Reddy BV; Ramesh P; Tiwari S
    Bioinformatics; 1998; 14(2):225-6. PubMed ID: 9545459
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Automated prediction of HIV drug resistance from genotype data.
    Shen C; Yu X; Harrison RW; Weber IT
    BMC Bioinformatics; 2016 Aug; 17 Suppl 8(Suppl 8):278. PubMed ID: 27586700
    [TBL] [Abstract][Full Text] [Related]  

  • 30. HIV-1 reverse transcriptase (RT) polymorphism 172K suppresses the effect of clinically relevant drug resistance mutations to both nucleoside and non-nucleoside RT inhibitors.
    Hachiya A; Marchand B; Kirby KA; Michailidis E; Tu X; Palczewski K; Ong YT; Li Z; Griffin DT; Schuckmann MM; Tanuma J; Oka S; Singh K; Kodama EN; Sarafianos SG
    J Biol Chem; 2012 Aug; 287(35):29988-99. PubMed ID: 22761416
    [TBL] [Abstract][Full Text] [Related]  

  • 31. PASS-based approach to predict HIV-1 reverse transcriptase resistance.
    Tarasova O; Filimonov D; Poroikov V
    J Bioinform Comput Biol; 2017 Apr; 15(2):1650040. PubMed ID: 28033735
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Structure-based methods to predict mutational resistance to diarylpyrimidine non-nucleoside reverse transcriptase inhibitors.
    Azeem SM; Muwonge AN; Thakkar N; Lam KW; Frey KM
    J Mol Graph Model; 2018 Jan; 79():133-139. PubMed ID: 29156381
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using machine learning and big data to explore the drug resistance landscape in HIV.
    Blassel L; Tostevin A; Villabona-Arenas CJ; Peeters M; Hué S; Gascuel O;
    PLoS Comput Biol; 2021 Aug; 17(8):e1008873. PubMed ID: 34437532
    [TBL] [Abstract][Full Text] [Related]  

  • 34. HADDOCK(2P2I): a biophysical model for predicting the binding affinity of protein-protein interaction inhibitors.
    Kastritis PL; Rodrigues JP; Bonvin AM
    J Chem Inf Model; 2014 Mar; 54(3):826-36. PubMed ID: 24521147
    [TBL] [Abstract][Full Text] [Related]  

  • 35. mutLBSgeneDB: mutated ligand binding site gene DataBase.
    Kim P; Zhao J; Lu P; Zhao Z
    Nucleic Acids Res; 2017 Jan; 45(D1):D256-D263. PubMed ID: 27907895
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identifying differentially expressed genes and screening small molecule drugs for lapatinib-resistance of breast cancer by a bioinformatics strategy.
    Zhuo WL; Zhang L; Xie QC; Zhu B; Chen ZT
    Asian Pac J Cancer Prev; 2014; 15(24):10847-53. PubMed ID: 25605188
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Quantum computational analysis for drug resistance of HIV-1 reverse transcriptase to nevirapine through point mutations.
    He X; Mei Y; Xiang Y; Zhang DW; Zhang JZ
    Proteins; 2005 Nov; 61(2):423-32. PubMed ID: 16114038
    [TBL] [Abstract][Full Text] [Related]  

  • 38. DeepPPAPredMut: deep ensemble method for predicting the binding affinity change in protein-protein complexes upon mutation.
    Nikam R; Jemimah S; Gromiha MM
    Bioinformatics; 2024 May; 40(5):. PubMed ID: 38718170
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ClusPro LigTBM: Automated Template-based Small Molecule Docking.
    Alekseenko A; Kotelnikov S; Ignatov M; Egbert M; Kholodov Y; Vajda S; Kozakov D
    J Mol Biol; 2020 May; 432(11):3404-3410. PubMed ID: 31863748
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An integrated molecular dynamics, principal component analysis and residue interaction network approach reveals the impact of M184V mutation on HIV reverse transcriptase resistance to lamivudine.
    Bhakat S; Martin AJ; Soliman ME
    Mol Biosyst; 2014 Aug; 10(8):2215-28. PubMed ID: 24931725
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.