These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 27384165)

  • 1. Prediction of air pollutant concentration based on sparse response back-propagation training feedforward neural networks.
    Ding W; Zhang J; Leung Y
    Environ Sci Pollut Res Int; 2016 Oct; 23(19):19481-94. PubMed ID: 27384165
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of Air Pollutants Concentration Based on an Extreme Learning Machine: The Case of Hong Kong.
    Zhang J; Ding W
    Int J Environ Res Public Health; 2017 Jan; 14(2):. PubMed ID: 28125034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of pollutant levels in central Hong Kong applying neural network method with particle swarm optimization.
    Lu WZ; Fan HY; Leung AY; Wong JC
    Environ Monit Assess; 2002 Nov; 79(3):217-30. PubMed ID: 12392160
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation.
    Li X; Peng L; Yao X; Cui S; Hu Y; You C; Chi T
    Environ Pollut; 2017 Dec; 231(Pt 1):997-1004. PubMed ID: 28898956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using improved neural network model to analyze RSP, NOx and NO2 levels in urban air in Mong Kok, Hong Kong.
    Lu WZ; Wang WJ; Wang XK; Xu ZB; Leung AY
    Environ Monit Assess; 2003 Sep; 87(3):235-54. PubMed ID: 12952354
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential assessment of a neural network model with PCA/RBF approach for forecasting pollutant trends in Mong Kok urban air, Hong Kong.
    Lu WZ; Wang WJ; Wang XK; Yan SH; Lam JC
    Environ Res; 2004 Sep; 96(1):79-87. PubMed ID: 15261787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linear and nonlinear modeling approaches for urban air quality prediction.
    Singh KP; Gupta S; Kumar A; Shukla SP
    Sci Total Environ; 2012 Jun; 426():244-55. PubMed ID: 22542239
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of the 1990 Hong Kong legislation for restriction on sulfur content in fuel.
    Wong CM; Rabl A; Thach TQ; Chau YK; Chan KP; Cowling BJ; Lai HK; Lam TH; McGhee SM; Anderson HR; Hedley AJ
    Res Rep Health Eff Inst; 2012 Aug; (170):5-91. PubMed ID: 23316618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Application of artificial neural networks on the prediction of surface ozone concentrations].
    Shen LL; Wang YX; Duan L
    Huan Jing Ke Xue; 2011 Aug; 32(8):2231-5. PubMed ID: 22619942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research on air pollutant concentration prediction method based on self-adaptive neuro-fuzzy weighted extreme learning machine.
    Li Y; Jiang P; She Q; Lin G
    Environ Pollut; 2018 Oct; 241():1115-1127. PubMed ID: 30029320
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assessment and statistical modeling of the relationship between remotely sensed aerosol optical depth and PM2.5 in the eastern United States.
    Paciorek CJ; Liu Y;
    Res Rep Health Eff Inst; 2012 May; (167):5-83; discussion 85-91. PubMed ID: 22838153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Input strategy analysis for an air quality data modelling procedure at a local scale based on neural network.
    Ragosta M; D'Emilio M; Giorgio GA
    Environ Monit Assess; 2015 May; 187(5):307. PubMed ID: 25925158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An application of artificial neural network models to estimate air temperature data in areas with sparse network of meteorological stations.
    Chronopoulos KI; Tsiros IX; Dimopoulos IF; Alvertos N
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Dec; 43(14):1752-7. PubMed ID: 18988114
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements.
    Kelly F; Anderson HR; Armstrong B; Atkinson R; Barratt B; Beevers S; Derwent D; Green D; Mudway I; Wilkinson P;
    Res Rep Health Eff Inst; 2011 Apr; (155):5-71. PubMed ID: 21830496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of maximum daily ozone level using combined neural network and statistical characteristics.
    Wang W; Lu W; Wang X; Leung AY
    Environ Int; 2003 Aug; 29(5):555-62. PubMed ID: 12742398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. LaSVM-based big data learning system for dynamic prediction of air pollution in Tehran.
    Ghaemi Z; Alimohammadi A; Farnaghi M
    Environ Monit Assess; 2018 Apr; 190(5):300. PubMed ID: 29679160
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Forecasting PM10 in metropolitan areas: Efficacy of neural networks.
    Fernando HJ; Mammarella MC; Grandoni G; Fedele P; Di Marco R; Dimitrova R; Hyde P
    Environ Pollut; 2012 Apr; 163():62-7. PubMed ID: 22325432
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hybrid model for PM₂.₅ forecasting based on ensemble empirical mode decomposition and a general regression neural network.
    Zhou Q; Jiang H; Wang J; Zhou J
    Sci Total Environ; 2014 Oct; 496():264-274. PubMed ID: 25089688
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An artificial neural network ensemble approach to generate air pollution maps.
    Van Roode S; Ruiz-Aguilar JJ; González-Enrique J; Turias IJ
    Environ Monit Assess; 2019 Nov; 191(12):727. PubMed ID: 31701254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential assessment of the "support vector machine" method in forecasting ambient air pollutant trends.
    Lu WZ; Wang WJ
    Chemosphere; 2005 Apr; 59(5):693-701. PubMed ID: 15792667
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.