BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 27384343)

  • 1. Biofilm adaptation to iron availability in the presence of biotite and consequences for chemical weathering.
    Grant MR; Tymon LS; Helms GL; Thomashow LS; Kent Keller C; Harsh JB
    Geobiology; 2016 Nov; 14(6):588-598. PubMed ID: 27384343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interactions between Biotite and the Mineral-Weathering Bacterium
    Wang YL; Sun LJ; Xian CM; Kou FL; Zhu Y; He LY; Sheng XF
    Appl Environ Microbiol; 2020 Mar; 86(7):. PubMed ID: 31953343
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial lithotrophic oxidation of structural Fe(II) in biotite.
    Shelobolina E; Xu H; Konishi H; Kukkadapu R; Wu T; Blöthe M; Roden E
    Appl Environ Microbiol; 2012 Aug; 78(16):5746-52. PubMed ID: 22685132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distinct biotite-weathering activities of Arthrobacter pascens F74 under different contact conditions.
    Sun Y; Wang Y; Li L; Sun L; He L; Sheng X
    J Basic Microbiol; 2020 Apr; 60(4):362-371. PubMed ID: 31840843
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro selection of ecologically adapted ectomycorrhizal fungi through production of fungal biomass and metabolites for use in reclamation of biotite mine tailings.
    Azaiez A; Beaudoin Nadeau M; Bertrand A; Khasa DP
    Mycologia; 2018; 110(6):1017-1032. PubMed ID: 30481136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of forest trees on the distribution of mineral weathering-associated bacterial communities of the Scleroderma citrinum mycorrhizosphere.
    Calvaruso C; Turpault MP; Leclerc E; Ranger J; Garbaye J; Uroz S; Frey-Klett P
    Appl Environ Microbiol; 2010 Jul; 76(14):4780-7. PubMed ID: 20511429
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Redox interactions between Cr(VI) and Fe(II) in bioreduced biotite and chlorite.
    Brookshaw DR; Coker VS; Lloyd JR; Vaughan DJ; Pattrick RA
    Environ Sci Technol; 2014 Oct; 48(19):11337-42. PubMed ID: 25196156
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural Fe(II) Oxidation in Biotite by an Ectomycorrhizal Fungi Drives Mechanical Forcing.
    Bonneville S; Bray AW; Benning LG
    Environ Sci Technol; 2016 Jun; 50(11):5589-96. PubMed ID: 27128742
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of bacterial siderophore on cesium dissolution from biotite.
    Kimura T; Fukutani S; Ikegami M; Sakamoto F; Kozai N; Grambow B; Yoneda M
    Chemosphere; 2021 Aug; 276():130121. PubMed ID: 33684861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Root-associated bacteria contribute to mineral weathering and to mineral nutrition in trees: a budgeting analysis.
    Calvaruso C; Turpault MP; Frey-Klett P
    Appl Environ Microbiol; 2006 Feb; 72(2):1258-66. PubMed ID: 16461674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Change in mineral weathering behaviors of a bacterium Chitinophaga jiangningensis JN53 under different nutrition conditions.
    Cheng C; Wang Q; He L; Sheng X
    J Basic Microbiol; 2017 Apr; 57(4):293-301. PubMed ID: 28139058
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biofilm formation assessment in Sinorhizobium meliloti reveals interlinked control with surface motility.
    Amaya-Gómez CV; Hirsch AM; Soto MJ
    BMC Microbiol; 2015 Mar; 15():58. PubMed ID: 25887945
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Model system studies of the influence of bacterial biofilm formation on mineral surface reactivity.
    Brydie JR; Wogelius RA; Boult S; Merrifield CM; Vaughan DJ
    Biofouling; 2009; 25(5):463-72. PubMed ID: 19353390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Combination of Genomics, Transcriptomics, and Genetics Provides Insights into the Mineral Weathering Phenotype of Pseudomonas azotoformans F77.
    Wang YL; Dong W; Xiang KX; Wang Q; He LY; Sheng XF
    Appl Environ Microbiol; 2021 Nov; 87(24):e0155221. PubMed ID: 34586903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redox Interactions of Tc(VII), U(VI), and Np(V) with Microbially Reduced Biotite and Chlorite.
    Brookshaw DR; Pattrick RA; Bots P; Law GT; Lloyd JR; Mosselmans JF; Vaughan DJ; Dardenne K; Morris K
    Environ Sci Technol; 2015 Nov; 49(22):13139-48. PubMed ID: 26488884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of iron-bearing phyllosilicates on the dechlorination kinetics of 1,1,1-trichloroethane in Fe(II)/cement slurries.
    Jung B; Batchelor B
    Chemosphere; 2007 Jul; 68(7):1254-61. PubMed ID: 17368506
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental signals and regulatory pathways that influence biofilm formation.
    Stanley NR; Lazazzera BA
    Mol Microbiol; 2004 May; 52(4):917-24. PubMed ID: 15130114
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biotic and abiotic experimental identification of bacterial influence on calcium isotopic signatures.
    Cobert F; Schmitt AD; Calvaruso C; Turpault MP; Lemarchand D; Collignon C; Chabaux F; Stille P
    Rapid Commun Mass Spectrom; 2011 Oct; 25(19):2760-8. PubMed ID: 21913253
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Use of MALDI-TOF mass spectrometry to analyze the molecular profile of Pseudomonas aeruginosa biofilms grown on glass and plastic surfaces.
    Pereira FD; Bonatto CC; Lopes CA; Pereira AL; Silva LP
    Microb Pathog; 2015 Sep; 86():32-7. PubMed ID: 26162295
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biotite-brine interactions under acidic hydrothermal conditions: fibrous illite, goethite, and kaolinite formation and biotite surface cracking.
    Hu Y; Ray JR; Jun YS
    Environ Sci Technol; 2011 Jul; 45(14):6175-80. PubMed ID: 21696218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.