BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 27384406)

  • 1. Renal epithelial miR-205 expression correlates with disease severity in a mouse model of congenital obstructive nephropathy.
    Wilhide ME; Feller JD; Li B; Mohamed AZ; Becknell B; Jackson AR; McHugh KM; Ingraham SE
    Pediatr Res; 2016 Oct; 80(4):602-9. PubMed ID: 27384406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular basis of renal adaptation in a murine model of congenital obstructive nephropathy.
    Becknell B; Carpenter AR; Allen JL; Wilhide ME; Ingraham SE; Hains DS; McHugh KM
    PLoS One; 2013; 8(9):e72762. PubMed ID: 24023768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The uroplakin plaque promotes renal structural integrity during congenital and acquired urinary tract obstruction.
    Jackson AR; Li B; Cohen SH; Ching CB; McHugh KM; Becknell B
    Am J Physiol Renal Physiol; 2018 Oct; 315(4):F1019-F1031. PubMed ID: 29897287
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of renal urothelium in the development and progression of kidney disease.
    Carpenter AR; McHugh KM
    Pediatr Nephrol; 2017 Apr; 32(4):557-564. PubMed ID: 27115886
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathogenesis of renal injury in the megabladder mouse: a genetic model of congenital obstructive nephropathy.
    Ingraham SE; Saha M; Carpenter AR; Robinson M; Ismail I; Singh S; Hains D; Robinson ML; Hirselj DA; Koff SA; Bates CM; McHugh KM
    Pediatr Res; 2010 Dec; 68(6):500-7. PubMed ID: 20736884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ureteral obstruction promotes proliferation and differentiation of the renal urothelium into a bladder-like phenotype.
    Girshovich A; Vinsonneau C; Perez J; Vandermeersch S; Verpont MC; Placier S; Jouanneau C; Letavernier E; Baud L; Haymann JP
    Kidney Int; 2012 Aug; 82(4):428-35. PubMed ID: 22513823
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uroplakin 1b is critical in urinary tract development and urothelial differentiation and homeostasis.
    Carpenter AR; Becknell MB; Ching CB; Cuaresma EJ; Chen X; Hains DS; McHugh KM
    Kidney Int; 2016 Mar; 89(3):612-24. PubMed ID: 26880456
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Krt5
    Jackson AR; Hoff ML; Li B; Ching CB; McHugh KM; Becknell B
    Am J Physiol Renal Physiol; 2019 Sep; 317(3):F757-F766. PubMed ID: 31322419
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Megabladder mouse model of congenital obstructive nephropathy: genetic etiology and renal adaptation.
    McHugh KM
    Pediatr Nephrol; 2014 Apr; 29(4):645-50. PubMed ID: 24276861
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of key microRNAs, transcription factors and genes associated with congenital obstructive nephropathy in a mouse model of megabladder.
    Xin G; Chen R; Zhang X
    Gene; 2018 Apr; 650():77-85. PubMed ID: 29410288
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kidney epithelium specific deletion of kelch-like ECH-associated protein 1 (Keap1) causes hydronephrosis in mice.
    Noel S; Arend LJ; Bandapalle S; Reddy SP; Rabb H
    BMC Nephrol; 2016 Aug; 17(1):110. PubMed ID: 27484495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. miR-199a-5p regulates urothelial permeability and may play a role in bladder pain syndrome.
    Monastyrskaya K; Sánchez-Freire V; Hashemi Gheinani A; Klumpp DJ; Babiychuk EB; Draeger A; Burkhard FC
    Am J Pathol; 2013 Feb; 182(2):431-48. PubMed ID: 23201090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Uroplakins as markers of diseases of the urinary system].
    Lis J; Kątnik-Prastowska I; Tupikowski K; Matejuk A
    Postepy Hig Med Dosw (Online); 2015 Jan; 69():98-113. PubMed ID: 25614678
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Glycosylation of uroplakins. Implications for bladder physiopathology.
    Kątnik-Prastowska I; Lis J; Matejuk A
    Glycoconj J; 2014 Dec; 31(9):623-36. PubMed ID: 25394961
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differentiation of epithelial cells in the urinary tract.
    Romih R; Korosec P; de Mello W; Jezernik K
    Cell Tissue Res; 2005 May; 320(2):259-68. PubMed ID: 15778856
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Erythropoietin protects the tubular basement membrane by promoting the bone marrow to release extracellular vesicles containing tPA-targeting miR-144.
    Zhou Y; Fang L; Yu Y; Niu J; Jiang L; Cao H; Sun Q; Zen K; Dai C; Yang J
    Am J Physiol Renal Physiol; 2016 Jan; 310(1):F27-40. PubMed ID: 26469975
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of a unique transgenic mouse line that develops megabladder, obstructive uropathy, and renal dysfunction.
    Singh S; Robinson M; Nahi F; Coley B; Robinson ML; Bates CM; Kornacker K; McHugh KM
    J Am Soc Nephrol; 2007 Feb; 18(2):461-71. PubMed ID: 17202422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pleiotropy of microRNA-192 in the kidney.
    Jenkins RH; Martin J; Phillips AO; Bowen T; Fraser DJ
    Biochem Soc Trans; 2012 Aug; 40(4):762-7. PubMed ID: 22817730
    [TBL] [Abstract][Full Text] [Related]  

  • 19. microRNA-dependent temporal gene expression in the ureteric bud epithelium during mammalian kidney development.
    Nagalakshmi VK; Lindner V; Wessels A; Yu J
    Dev Dyn; 2015 Mar; 244(3):444-56. PubMed ID: 25369991
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasticity of the urothelial phenotype: effects of gastro-intestinal mesenchyme/stroma and implications for urinary tract reconstruction.
    Li Y; Liu W; Hayward SW; Cunha GR; Baskin LS
    Differentiation; 2000 Oct; 66(2-3):126-35. PubMed ID: 11100903
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.