BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 27384440)

  • 1. Integrative Analysis of Subcellular Quantitative Proteomics Studies Reveals Functional Cytoskeleton Membrane-Lipid Raft Interactions in Cancer.
    Shah AD; Inder KL; Shah AK; Cristino AS; McKie AB; Gabra H; Davis MJ; Hill MM
    J Proteome Res; 2016 Oct; 15(10):3451-3462. PubMed ID: 27384440
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporal proteomics profiling of lipid rafts in CCR6-activated T cells reveals the integration of actin cytoskeleton dynamics.
    Lin SL; Chien CW; Han CL; Chen ES; Kao SH; Chen YJ; Liao F
    J Proteome Res; 2010 Jan; 9(1):283-97. PubMed ID: 19928914
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proteomic analysis of apical microvillous membranes of syncytiotrophoblast cells reveals a high degree of similarity with lipid rafts.
    Paradela A; Bravo SB; Henríquez M; Riquelme G; Gavilanes F; González-Ros JM; Albar JP
    J Proteome Res; 2005; 4(6):2435-41. PubMed ID: 16335998
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances and challenges in understanding the role of the lipid raft proteome in human health.
    Mohamed A; Robinson H; Erramouspe PJ; Hill MM
    Expert Rev Proteomics; 2018 Dec; 15(12):1053-1063. PubMed ID: 30403891
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative proteomic analysis of B cell lipid rafts reveals that ezrin regulates antigen receptor-mediated lipid raft dynamics.
    Gupta N; Wollscheid B; Watts JD; Scheer B; Aebersold R; DeFranco AL
    Nat Immunol; 2006 Jun; 7(6):625-33. PubMed ID: 16648854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteome scale characterization of human S-acylated proteins in lipid raft-enriched and non-raft membranes.
    Yang W; Di Vizio D; Kirchner M; Steen H; Freeman MR
    Mol Cell Proteomics; 2010 Jan; 9(1):54-70. PubMed ID: 19801377
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tetraspanin CD82 controls the association of cholesterol-dependent microdomains with the actin cytoskeleton in T lymphocytes: relevance to co-stimulation.
    Delaguillaumie A; Harriague J; Kohanna S; Bismuth G; Rubinstein E; Seigneuret M; Conjeaud H
    J Cell Sci; 2004 Oct; 117(Pt 22):5269-82. PubMed ID: 15454569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global network analysis of lipid-raft-related proteins reveals their centrality in the network and their roles in multiple biological processes.
    Zhang T; Zhang X; Sun Z
    J Mol Biol; 2010 Oct; 402(4):761-73. PubMed ID: 20709075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cytoskeleton-membrane interactions in membrane raft structure.
    Chichili GR; Rodgers W
    Cell Mol Life Sci; 2009 Jul; 66(14):2319-28. PubMed ID: 19370312
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid chromatography electrospray ionization and matrix-assisted laser desorption ionization tandem mass spectrometry for the analysis of lipid raft proteome of monocytes.
    Zhang N; Shaw AR; Li N; Chen R; Mak A; Hu X; Young N; Wishart D; Li L
    Anal Chim Acta; 2008 Oct; 627(1):82-90. PubMed ID: 18790130
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Proteomic Analysis of Lipid Raft-Like Detergent-Resistant Membranes of Lens Fiber Cells.
    Wang Z; Schey KL
    Invest Ophthalmol Vis Sci; 2015 Dec; 56(13):8349-60. PubMed ID: 26747763
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactive protein network of FXIII-A1 in lipid rafts of activated and non-activated platelets.
    Rabani V; Montange D; Davani S
    Platelets; 2016 Sep; 27(6):598-602. PubMed ID: 27540960
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Raft and cytoskeleton associations of an ABC transporter: P-glycoprotein.
    Bacso Z; Nagy H; Goda K; Bene L; Fenyvesi F; Matkó J; Szabó G
    Cytometry A; 2004 Oct; 61(2):105-16. PubMed ID: 15382145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lipid raft proteomics: more than just detergent-resistant membranes.
    Foster LJ; Chan QW
    Subcell Biochem; 2007; 43():35-47. PubMed ID: 17953390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. NrCAM coupling to the cytoskeleton depends on multiple protein domains and partitioning into lipid rafts.
    Falk J; Thoumine O; Dequidt C; Choquet D; Faivre-Sarrailh C
    Mol Biol Cell; 2004 Oct; 15(10):4695-709. PubMed ID: 15254265
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative lipidomics and proteomics analysis of platelet lipid rafts using different detergents.
    Rabani V; Davani S; Gambert-Nicot S; Meneveau N; Montange D
    Platelets; 2016 Nov; 27(7):634-641. PubMed ID: 27184886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A quantitative proteomic analysis of growth factor-induced compositional changes in lipid rafts of human smooth muscle cells.
    MacLellan DL; Steen H; Adam RM; Garlick M; Zurakowski D; Gygi SP; Freeman MR; Solomon KR
    Proteomics; 2005 Dec; 5(18):4733-42. PubMed ID: 16267816
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RaftProt: mammalian lipid raft proteome database.
    Shah A; Chen D; Boda AR; Foster LJ; Davis MJ; Hill MM
    Nucleic Acids Res; 2015 Jan; 43(Database issue):D335-8. PubMed ID: 25392410
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Exploration of the functional proteome: lessons from lipid rafts.
    Shaw AR; Li L
    Curr Opin Mol Ther; 2003 Jun; 5(3):294-301. PubMed ID: 12870440
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissecting lipid raft facilitated cell signaling pathways in cancer.
    Patra SK
    Biochim Biophys Acta; 2008 Apr; 1785(2):182-206. PubMed ID: 18166162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.