BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 27385011)

  • 1. Leapfrogging: primordial germ cell transplantation permits recovery of CRISPR/Cas9-induced mutations in essential genes.
    Blitz IL; Fish MB; Cho KW
    Development; 2016 Aug; 143(15):2868-75. PubMed ID: 27385011
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Primordial Germ Cell Transplantation for CRISPR/Cas9-based Leapfrogging in Xenopus.
    Blitz IL
    J Vis Exp; 2018 Feb; (132):. PubMed ID: 29443056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient RNA/Cas9-mediated genome editing in Xenopus tropicalis.
    Guo X; Zhang T; Hu Z; Zhang Y; Shi Z; Wang Q; Cui Y; Wang F; Zhao H; Chen Y
    Development; 2014 Feb; 141(3):707-14. PubMed ID: 24401372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient generation of zebrafish maternal-zygotic mutants through transplantation of ectopically induced and Cas9/gRNA targeted primordial germ cells.
    Zhang F; Li X; He M; Ye D; Xiong F; Amin G; Zhu Z; Sun Y
    J Genet Genomics; 2020 Jan; 47(1):37-47. PubMed ID: 32094061
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid and efficient analysis of gene function using CRISPR-Cas9 in Xenopus tropicalis founders.
    Shigeta M; Sakane Y; Iida M; Suzuki M; Kashiwagi K; Kashiwagi A; Fujii S; Yamamoto T; Suzuki KT
    Genes Cells; 2016 Jul; 21(7):755-71. PubMed ID: 27219625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genotyping of CRISPR/Cas9 Genome Edited Xenopus tropicalis.
    Naert T; Vleminckx K
    Methods Mol Biol; 2018; 1865():67-82. PubMed ID: 30151759
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved Genome Editing in the Ascidian Ciona with CRISPR/Cas9 and TALEN.
    Sasakura Y; Horie T
    Methods Mol Biol; 2023; 2637():375-388. PubMed ID: 36773161
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CRISPR-Cas9 Mutagenesis in
    Blitz IL; Nakayama T
    Cold Spring Harb Protoc; 2022 Mar; 2022(3):. PubMed ID: 34244352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-Cas9 editing of non-coding genomic loci as a means of controlling gene expression in the sea urchin.
    Pieplow A; Dastaw M; Sakuma T; Sakamoto N; Yamamoto T; Yajima M; Oulhen N; Wessel GM
    Dev Biol; 2021 Apr; 472():85-97. PubMed ID: 33482173
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biallelic genome modification in F(0) Xenopus tropicalis embryos using the CRISPR/Cas system.
    Blitz IL; Biesinger J; Xie X; Cho KW
    Genesis; 2013 Dec; 51(12):827-34. PubMed ID: 24123579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila.
    Port F; Chen HM; Lee T; Bullock SL
    Proc Natl Acad Sci U S A; 2014 Jul; 111(29):E2967-76. PubMed ID: 25002478
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9.
    Varshney GK; Pei W; LaFave MC; Idol J; Xu L; Gallardo V; Carrington B; Bishop K; Jones M; Li M; Harper U; Huang SC; Prakash A; Chen W; Sood R; Ledin J; Burgess SM
    Genome Res; 2015 Jul; 25(7):1030-42. PubMed ID: 26048245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. CRISPR/Cas9 Platforms for Genome Editing in Plants: Developments and Applications.
    Ma X; Zhu Q; Chen Y; Liu YG
    Mol Plant; 2016 Jul; 9(7):961-74. PubMed ID: 27108381
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-efficiency non-mosaic CRISPR-mediated knock-in and indel mutation in F0
    Aslan Y; Tadjuidje E; Zorn AM; Cha SW
    Development; 2017 Aug; 144(15):2852-2858. PubMed ID: 28694259
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the efficiency for generation of genome-edited zebrafish by labeling primordial germ cells.
    Dong Z; Dong X; Jia W; Cao S; Zhao Q
    Int J Biochem Cell Biol; 2014 Oct; 55():329-34. PubMed ID: 25194339
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Germ cell regeneration-mediated, enhanced mutagenesis in the ascidian Ciona intestinalis reveals flexible germ cell formation from different somatic cells.
    Yoshida K; Hozumi A; Treen N; Sakuma T; Yamamoto T; Shirae-Kurabayashi M; Sasakura Y
    Dev Biol; 2017 Mar; 423(2):111-125. PubMed ID: 28161521
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Maximizing mutagenesis with solubilized CRISPR-Cas9 ribonucleoprotein complexes.
    Burger A; Lindsay H; Felker A; Hess C; Anders C; Chiavacci E; Zaugg J; Weber LM; Catena R; Jinek M; Robinson MD; Mosimann C
    Development; 2016 Jun; 143(11):2025-37. PubMed ID: 27130213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient platform for generating somatic point mutations with germline transmission in the zebrafish by CRISPR/Cas9-mediated gene editing.
    Zhang Y; Zhang Z; Ge W
    J Biol Chem; 2018 Apr; 293(17):6611-6622. PubMed ID: 29500194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TEAD4 regulates trophectoderm differentiation upstream of CDX2 in a GATA3-independent manner in the human preimplantation embryo.
    Stamatiadis P; Cosemans G; Boel A; Menten B; De Sutter P; Stoop D; Chuva de Sousa Lopes SM; Lluis F; Coucke P; Heindryckx B
    Hum Reprod; 2022 Jul; 37(8):1760-1773. PubMed ID: 35700449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CRISPR/Cas9 and TALENs generate heritable mutations for genes involved in small RNA processing of Glycine max and Medicago truncatula.
    Curtin SJ; Xiong Y; Michno JM; Campbell BW; Stec AO; Čermák T; Starker C; Voytas DF; Eamens AL; Stupar RM
    Plant Biotechnol J; 2018 Jun; 16(6):1125-1137. PubMed ID: 29087011
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.