BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

542 related articles for article (PubMed ID: 27385169)

  • 1. Evaluation and Quantitative Prediction of Renal Transporter-Mediated Drug-Drug Interactions.
    Feng B; Varma MV
    J Clin Pharmacol; 2016 Jul; 56 Suppl 7():S110-21. PubMed ID: 27385169
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transporter-Enzyme Interplay: Deconvoluting Effects of Hepatic Transporters and Enzymes on Drug Disposition Using Static and Dynamic Mechanistic Models.
    Varma MV; El-Kattan AF
    J Clin Pharmacol; 2016 Jul; 56 Suppl 7():S99-S109. PubMed ID: 27385183
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Renal Drug Transporters and Drug Interactions.
    Ivanyuk A; Livio F; Biollaz J; Buclin T
    Clin Pharmacokinet; 2017 Aug; 56(8):825-892. PubMed ID: 28210973
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Use of Transporter Probe Drug Cocktails for the Assessment of Transporter-Based Drug-Drug Interactions in a Clinical Setting-Proposal of a Four Component Transporter Cocktail.
    Ebner T; Ishiguro N; Taub ME
    J Pharm Sci; 2015 Sep; 104(9):3220-8. PubMed ID: 25981193
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Species differences in drug transporters and implications for translating preclinical findings to humans.
    Chu X; Bleasby K; Evers R
    Expert Opin Drug Metab Toxicol; 2013 Mar; 9(3):237-52. PubMed ID: 23256482
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro evidence for the role of OATP and OCT uptake transporters in drug-drug interactions.
    Kindla J; Fromm MF; König J
    Expert Opin Drug Metab Toxicol; 2009 May; 5(5):489-500. PubMed ID: 19416085
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative prediction of renal transporter-mediated clinical drug-drug interactions.
    Feng B; Hurst S; Lu Y; Varma MV; Rotter CJ; El-Kattan A; Lockwood P; Corrigan B
    Mol Pharm; 2013 Nov; 10(11):4207-15. PubMed ID: 24066726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Renal drug-drug interactions: what we have learned and where we are going.
    Lepist EI; Ray AS
    Expert Opin Drug Metab Toxicol; 2012 Apr; 8(4):433-48. PubMed ID: 22372422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of Substrate-Dependent Inhibition on Renal Organic Cation Transporters hOCT2 and hMATE1/2-K-Mediated Drug Transport and Intracellular Accumulation.
    Yin J; Duan H; Wang J
    J Pharmacol Exp Ther; 2016 Dec; 359(3):401-410. PubMed ID: 27758931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Renal organic anion transporters in drug-drug interactions and diseases.
    Huo X; Liu K
    Eur J Pharm Sci; 2018 Jan; 112():8-19. PubMed ID: 29109021
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Renal clearance in drug discovery and development: molecular descriptors, drug transporters and disease state.
    Feng B; LaPerle JL; Chang G; Varma MV
    Expert Opin Drug Metab Toxicol; 2010 Aug; 6(8):939-52. PubMed ID: 20433402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transporter-Mediated Drug-Drug Interactions and Their Significance.
    Liu X
    Adv Exp Med Biol; 2019; 1141():241-291. PubMed ID: 31571167
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro evaluation of hepatic transporter-mediated clinical drug-drug interactions: hepatocyte model optimization and retrospective investigation.
    Bi YA; Kimoto E; Sevidal S; Jones HM; Barton HA; Kempshall S; Whalen KM; Zhang H; Ji C; Fenner KS; El-Kattan AF; Lai Y
    Drug Metab Dispos; 2012 Jun; 40(6):1085-92. PubMed ID: 22381335
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic in vitro studies confirm that inhibition of the renal apical efflux transporter multidrug and toxin extrusion (MATE) 1, and not altered absorption, underlies the increased metformin exposure observed in clinical interactions with cimetidine, trimethoprim or pyrimethamine.
    Elsby R; Chidlaw S; Outteridge S; Pickering S; Radcliffe A; Sullivan R; Jones H; Butler P
    Pharmacol Res Perspect; 2017 Oct; 5(5):. PubMed ID: 28971610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Systematic Development and Verification of a Physiologically Based Pharmacokinetic Model of Rivaroxaban.
    Cheong EJY; Teo DWX; Chua DXY; Chan ECY
    Drug Metab Dispos; 2019 Nov; 47(11):1291-1306. PubMed ID: 31506301
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transporters and renal drug elimination.
    Lee W; Kim RB
    Annu Rev Pharmacol Toxicol; 2004; 44():137-66. PubMed ID: 14744242
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Importance of Hepatic Transporters in Clinical Disposition of Drugs and Their Metabolites.
    Patel M; Taskar KS; Zamek-Gliszczynski MJ
    J Clin Pharmacol; 2016 Jul; 56 Suppl 7():S23-39. PubMed ID: 27385177
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renal transporters in drug disposition, drug-drug interactions, and nephrotoxicity.
    Feng B; El-Kattan AF; Radi ZA
    Curr Protoc Toxicol; 2012 Aug; Chapter 23():Unit 23.3.1-15. PubMed ID: 22896010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of clinical drug-drug interactions of veliparib (ABT-888) with human renal transporters (OAT1, OAT3, OCT2, MATE1, and MATE2K).
    Kikuchi R; Lao Y; Bow DA; Chiou WJ; Andracki ME; Carr RA; Voorman RL; De Morais SM
    J Pharm Sci; 2013 Dec; 102(12):4426-32. PubMed ID: 24122511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of basolateral organic anion and cation transporters in experimental cadmium nephrotoxicity in rat kidney.
    Ljubojević M; Breljak D; Herak-Kramberger CM; Anzai N; Sabolić I
    Arch Toxicol; 2016 Mar; 90(3):525-41. PubMed ID: 25588984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.