BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 27385191)

  • 1. Quantitative Evaluation of Site Energies and Their Fluctuations of Pigments in the Fenna-Matthews-Olson Complex with an Efficient Method for Generating a Potential Energy Surface.
    Higashi M; Saito S
    J Chem Theory Comput; 2016 Aug; 12(8):4128-37. PubMed ID: 27385191
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of Force Fields and Quantum Chemistry Approach on Spectral Densities of BChl a in Solution and in FMO Proteins.
    Chandrasekaran S; Aghtar M; Valleau S; Aspuru-Guzik A; Kleinekathöfer U
    J Phys Chem B; 2015 Aug; 119(31):9995-10004. PubMed ID: 26156758
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictive First-Principles Modeling of a Photosynthetic Antenna Protein: The Fenna-Matthews-Olson Complex.
    Kim Y; Morozov D; Stadnytskyi V; Savikhin S; Slipchenko LV
    J Phys Chem Lett; 2020 Mar; 11(5):1636-1643. PubMed ID: 32013435
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Fenna-Matthews-Olson protein revisited: a fully polarizable (TD)DFT/MM description.
    Jurinovich S; Curutchet C; Mennucci B
    Chemphyschem; 2014 Oct; 15(15):3194-204. PubMed ID: 25080315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. FMOxFMO: Elucidating Excitonic Interactions in the Fenna-Matthews-Olson Complex with the Fragment Molecular Orbital Method.
    Kaliakin DS; Nakata H; Kim Y; Chen Q; Fedorov DG; Slipchenko LV
    J Chem Theory Comput; 2020 Feb; 16(2):1175-1187. PubMed ID: 31841349
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Normal mode analysis of the spectral density of the Fenna-Matthews-Olson light-harvesting protein: how the protein dissipates the excess energy of excitons.
    Renger T; Klinger A; Steinecker F; Schmidt am Busch M; Numata J; Müh F
    J Phys Chem B; 2012 Dec; 116(50):14565-80. PubMed ID: 23163520
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How proteins trigger excitation energy transfer in the FMO complex of green sulfur bacteria.
    Adolphs J; Renger T
    Biophys J; 2006 Oct; 91(8):2778-97. PubMed ID: 16861264
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The fate of the triplet excitations in the Fenna-Matthews-Olson complex.
    Kihara S; Hartzler DA; Orf GS; Blankenship RE; Savikhin S
    J Phys Chem B; 2015 May; 119(18):5765-72. PubMed ID: 25856694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy landscape of the intact and destabilized FMO antennas from C. tepidum and the L122Q mutant: Low temperature spectroscopy and modeling study.
    Khmelnitskiy A; Kell A; Reinot T; Saer RG; Blankenship RE; Jankowiak R
    Biochim Biophys Acta Bioenerg; 2018 Mar; 1859(3):165-173. PubMed ID: 29198987
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Native electrospray mass spectrometry reveals the nature and stoichiometry of pigments in the FMO photosynthetic antenna protein.
    Wen J; Zhang H; Gross ML; Blankenship RE
    Biochemistry; 2011 May; 50(17):3502-11. PubMed ID: 21449539
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Static Disorder in Excitation Energies of the Fenna-Matthews-Olson Protein: Structure-Based Theory Meets Experiment.
    Chaillet ML; Lengauer F; Adolphs J; Müh F; Fokas AS; Cole DJ; Chin AW; Renger T
    J Phys Chem Lett; 2020 Dec; 11(24):10306-10314. PubMed ID: 33227205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exciton transfer dynamics and quantumness of energy transfer in the Fenna-Matthews-Olson complex.
    Nalbach P; Braun D; Thorwart M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Oct; 84(4 Pt 1):041926. PubMed ID: 22181194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-Dependent Fluctuations Optimize Electronic Energy Transfer in the Fenna-Matthews-Olson Protein.
    Saito S; Higashi M; Fleming GR
    J Phys Chem B; 2019 Nov; 123(46):9762-9772. PubMed ID: 31657928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of bacteriochlorophyll conformation to the distribution of site-energies in the FMO protein.
    MacGowan SA; Senge MO
    Biochim Biophys Acta; 2016 Apr; 1857(4):427-42. PubMed ID: 26851682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of site-dependent pigment-protein interactions on excitation energy transfer in photosynthetic light harvesting.
    Rivera E; Montemayor D; Masia M; Coker DF
    J Phys Chem B; 2013 May; 117(18):5510-21. PubMed ID: 23597258
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Constructing an Interpolated Potential Energy Surface of a Large Molecule: A Case Study with Bacteriochlorophyll a Model in the Fenna-Matthews-Olson Complex.
    Kim CW; Rhee YM
    J Chem Theory Comput; 2016 Nov; 12(11):5235-5246. PubMed ID: 27760297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vibronically coherent speed-up of the excitation energy transfer in the Fenna-Matthews-Olson complex.
    Nalbach P; Mujica-Martinez CA; Thorwart M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022706. PubMed ID: 25768530
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultrafast Spectroscopic Investigation of Energy Transfer in Site-Directed Mutants of the Fenna-Matthews-Olson (FMO) Antenna Complex from Chlorobaculum tepidum.
    Magdaong NCM; Saer RG; Niedzwiedzki DM; Blankenship RE
    J Phys Chem B; 2017 May; 121(18):4700-4712. PubMed ID: 28422512
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A reconstituted light-harvesting complex from the green sulfur bacterium Chlorobium tepidum containing CsmA and bacteriochlorophyll a.
    Pedersen MØ; Pham L; Steensgaard DB; Miller M
    Biochemistry; 2008 Feb; 47(5):1435-41. PubMed ID: 18177020
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intensity dependence of the excited state lifetimes and triplet conversion yield in the Fenna-Matthews-Olson antenna protein.
    Orf GS; Niedzwiedzki DM; Blankenship RE
    J Phys Chem B; 2014 Feb; 118(8):2058-69. PubMed ID: 24490821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.