These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 27385532)

  • 1. Room-temperature and temperature-dependent QSRR modelling for predicting the nitrate radical reaction rate constants of organic chemicals using ensemble learning methods.
    Gupta S; Basant N; Mohan D; Singh KP
    SAR QSAR Environ Res; 2016 Jul; 27(7):539-58. PubMed ID: 27385532
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling the reactivities of hydroxyl radical and ozone towards atmospheric organic chemicals using quantitative structure-reactivity relationship approaches.
    Gupta S; Basant N; Mohan D; Singh KP
    Environ Sci Pollut Res Int; 2016 Jul; 23(14):14034-46. PubMed ID: 27040550
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a model for predicting hydroxyl radical reaction rate constants of organic chemicals at different temperatures.
    Li C; Yang X; Li X; Chen J; Qiao X
    Chemosphere; 2014 Jan; 95():613-8. PubMed ID: 24210594
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multispecies QSAR modeling for predicting the aquatic toxicity of diverse organic chemicals for regulatory toxicology.
    Singh KP; Gupta S; Kumar A; Mohan D
    Chem Res Toxicol; 2014 May; 27(5):741-53. PubMed ID: 24738471
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico prediction of toxicity of non-congeneric industrial chemicals using ensemble learning based modeling approaches.
    Singh KP; Gupta S
    Toxicol Appl Pharmacol; 2014 Mar; 275(3):198-212. PubMed ID: 24463095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting the hazardous dose of industrial chemicals in warm-blooded species using machine learning-based modelling approaches.
    Gupta S; Basant N; Singh KP
    SAR QSAR Environ Res; 2015 Jun; 26(6):479-98. PubMed ID: 26087353
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a model for predicting reaction rate constants of organic chemicals with ozone at different temperatures.
    Li X; Zhao W; Li J; Jiang J; Chen J; Chen J
    Chemosphere; 2013 Aug; 92(8):1029-34. PubMed ID: 23601122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature and pressure dependence of the rate constants of the reaction of NO3 radical with CH3SCH3.
    Nakano Y; Ishiwata T; Aloisio S; Kawasaki M
    J Phys Chem A; 2006 Jun; 110(23):7401-5. PubMed ID: 16759128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the pH and temperature dependence of aqueousphase hydroxyl radical reaction rate constants of organic micropollutants using QSPR approach.
    Gupta S; Basant N
    Environ Sci Pollut Res Int; 2017 Nov; 24(32):24936-24946. PubMed ID: 28918607
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A three-tier QSAR modeling strategy for estimating eye irritation potential of diverse chemicals in rabbit for regulatory purposes.
    Basant N; Gupta S; Singh KP
    Regul Toxicol Pharmacol; 2016 Jun; 77():282-91. PubMed ID: 27018829
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a QSAR model for predicting aqueous reaction rate constants of organic chemicals with hydroxyl radicals.
    Luo X; Yang X; Qiao X; Wang Y; Chen J; Wei X; Peijnenburg WJ
    Environ Sci Process Impacts; 2017 Mar; 19(3):350-356. PubMed ID: 28261708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the binding affinity of structurally diverse industrial chemicals to carbon using the artificial intelligence approaches.
    Gupta S; Basant N; Rai P; Singh KP
    Environ Sci Pollut Res Int; 2015 Nov; 22(22):17810-27. PubMed ID: 26160122
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting tropospheric degradation of chemicals: from estimation to computation.
    Güsten H; Medven Z; Sekusak S; Sabljić A
    SAR QSAR Environ Res; 1995; 4(4):197-209. PubMed ID: 8765908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. QSAR modeling for predicting reproductive toxicity of chemicals in rats for regulatory purposes.
    Basant N; Gupta S; Singh KP
    Toxicol Res (Camb); 2016 Jul; 5(4):1029-1038. PubMed ID: 30090410
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Basant N; Gupta S; Singh KP
    Toxicol Res (Camb); 2016 May; 5(3):773-787. PubMed ID: 30090388
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estimating sensory irritation potency of volatile organic chemicals using QSARs based on decision tree methods for regulatory purpose.
    Gupta S; Basant N; Singh KP
    Ecotoxicology; 2015 May; 24(4):873-86. PubMed ID: 25707485
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative structure retention relationship (QSRR) modelling for Analytes' retention prediction in LC-HRMS by applying different Machine Learning algorithms and evaluating their performance.
    Liapikos T; Zisi C; Kodra D; Kademoglou K; Diamantidou D; Begou O; Pappa-Louisi A; Theodoridis G
    J Chromatogr B Analyt Technol Biomed Life Sci; 2022 Feb; 1191():123132. PubMed ID: 35093854
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predicting binding affinities of diverse pharmaceutical chemicals to human serum plasma proteins using QSPR modelling approaches.
    Basant N; Gupta S; Singh KP
    SAR QSAR Environ Res; 2016; 27(1):67-85. PubMed ID: 26854728
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organic nitrate formation in the radical-initiated oxidation of model aerosol particles in the presence of NOx.
    Renbaum LH; Smith GD
    Phys Chem Chem Phys; 2009 Sep; 11(36):8040-7. PubMed ID: 19727511
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Study of nitrate radical (NO3) reactions with carbonyls and acids in aqueous solution as a function of temperature.
    Gaillard de Sémainville P; Hoffmann D; George Ch; Herrmann H
    Phys Chem Chem Phys; 2007 Feb; 9(8):958-68. PubMed ID: 17301886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.