BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 27385663)

  • 1. Selective Deoxygenation of Biomass-Derived Bio-oils within Hydrogen-Modest Environments: A Review and New Insights.
    Rogers KA; Zheng Y
    ChemSusChem; 2016 Jul; 9(14):1750-72. PubMed ID: 27385663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reaction pathways for the deoxygenation of vegetable oils and related model compounds.
    Gosselink RW; Hollak SA; Chang SW; van Haveren J; de Jong KP; Bitter JH; van Es DS
    ChemSusChem; 2013 Sep; 6(9):1576-94. PubMed ID: 23913576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrothermal deoxygenation of triglycerides over Pd/C aided by in situ hydrogen production from glycerol reforming.
    Hollak SA; Ariëns MA; de Jong KP; van Es DS
    ChemSusChem; 2014 Apr; 7(4):1057-62. PubMed ID: 24596129
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of hydrocarbons and phenols in catalytic pyrolysis bio-oil by employing aluminum hydroxide nanoparticle based spent adsorbent derived catalysts.
    Gupta S; Lanjewar R; Mondal P
    Chemosphere; 2022 Jan; 287(Pt 3):132220. PubMed ID: 34543895
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Catalytic co-pyrolysis of red cedar with methane to produce upgraded bio-oil.
    Tshikesho RS; Kumar A; Huhnke RL; Apblett A
    Bioresour Technol; 2019 Aug; 285():121299. PubMed ID: 31003206
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review on advanced catalytic co-pyrolysis of biomass and hydrogen-rich feedstock: Insights into synergistic effect, catalyst development and reaction mechanism.
    Ahmed MHM; Batalha N; Mahmudul HMD; Perkins G; Konarova M
    Bioresour Technol; 2020 Aug; 310():123457. PubMed ID: 32371033
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-temperature, selective catalytic deoxygenation of vegetable oil in supercritical fluid media.
    Kim SK; Lee HS; Hong MH; Lim JS; Kim J
    ChemSusChem; 2014 Feb; 7(2):492-500. PubMed ID: 24339322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bio-oil deoxygenation by catalytic pyrolysis: new catalysts for the conversion of biomass into densified and deoxygenated bio-oil.
    Sanna A; Andrésen JM
    ChemSusChem; 2012 Oct; 5(10):1944-57. PubMed ID: 22899352
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodeoxygenation processes: advances on catalytic transformations of biomass-derived platform chemicals into hydrocarbon fuels.
    De S; Saha B; Luque R
    Bioresour Technol; 2015 Feb; 178():108-118. PubMed ID: 25443804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Production of bio-hydrogenated diesel by catalytic hydrotreating of palm oil over NiMoS2/γ-Al2O3 catalyst.
    Srifa A; Faungnawakij K; Itthibenchapong V; Viriya-Empikul N; Charinpanitkul T; Assabumrungrat S
    Bioresour Technol; 2014 Apr; 158():81-90. PubMed ID: 24583218
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Steam Reforming of Model Bio-Oil Aqueous Fraction Using Ni-(Cu, Co, Cr)/SBA-15 Catalysts.
    Calles JA; Carrero A; Vizcaíno AJ; García-Moreno L; Megía PJ
    Int J Mol Sci; 2019 Jan; 20(3):. PubMed ID: 30691053
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Catalytic conversion of renewable biomass resources to fuels and chemicals.
    Serrano-Ruiz JC; West RM; Dumesic JA
    Annu Rev Chem Biomol Eng; 2010; 1():79-100. PubMed ID: 22432574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new approach for bio-jet fuel generation from palm oil and limonene in the absence of hydrogen.
    Zhang J; Zhao C
    Chem Commun (Camb); 2015 Dec; 51(97):17249-52. PubMed ID: 26459451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Essential Quality Attributes of Tangible Bio-Oils from Catalytic Pyrolysis of Lignocellulosic Biomass.
    Zhang C; Zhang ZC
    Chem Rec; 2019 Sep; 19(9):2044-2057. PubMed ID: 31483089
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of the production of bio-aromatics from renewable lignin by combined approach of torrefaction deoxygenation pretreatment and shape selective catalytic fast pyrolysis using metal modified zeolites.
    Huang M; Ma Z; Zhou B; Yang Y; Chen D
    Bioresour Technol; 2020 Apr; 301():122754. PubMed ID: 31954971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Production, separation and applications of phenolic-rich bio-oil--a review.
    Kim JS
    Bioresour Technol; 2015 Feb; 178():90-98. PubMed ID: 25239785
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From biomass to advanced bio-fuel by catalytic pyrolysis/hydro-processing: hydrodeoxygenation of bio-oil derived from biomass catalytic pyrolysis.
    Wang Y; He T; Liu K; Wu J; Fang Y
    Bioresour Technol; 2012 Mar; 108():280-4. PubMed ID: 22281148
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integration of heterogeneous and biochemical catalysis for production of fuels and chemicals from biomass.
    Wheeldon I; Christopher P; Blanch H
    Curr Opin Biotechnol; 2017 Jun; 45():127-135. PubMed ID: 28365403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic pyrolysis of lignocellulosic biomass for bio-oil production: A review.
    Wang Y; Akbarzadeh A; Chong L; Du J; Tahir N; Awasthi MK
    Chemosphere; 2022 Jun; 297():134181. PubMed ID: 35248592
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Catalytic fast pyrolysis of biomass: Selective deoxygenation to balance the quality and yield of bio-oil.
    Chen X; Chen Y; Yang H; Wang X; Che Q; Chen W; Chen H
    Bioresour Technol; 2019 Feb; 273():153-158. PubMed ID: 30439633
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.