BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 27385734)

  • 1. Bladder urine oxygen tension for assessing renal medullary oxygenation in rabbits: experimental and modeling studies.
    Sgouralis I; Kett MM; Ow CP; Abdelkader A; Layton AT; Gardiner BS; Smith DW; Lankadeva YR; Evans RG
    Am J Physiol Regul Integr Comp Physiol; 2016 Sep; 311(3):R532-44. PubMed ID: 27385734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Urinary oxygen tension: a clinical window on the health of the renal medulla?
    Evans RG; Smith JA; Wright C; Gardiner BS; Smith DW; Cochrane AD
    Am J Physiol Regul Integr Comp Physiol; 2014 Jan; 306(1):R45-50. PubMed ID: 24226029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting oxygen tension along the ureter.
    Lee CJ; Gardiner BS; Evans RG; Smith DW
    Am J Physiol Renal Physiol; 2021 Oct; 321(4):F527-F547. PubMed ID: 34459223
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Urinary Oxygenation as a Surrogate Measure of Medullary Oxygenation During Angiotensin II Therapy in Septic Acute Kidney Injury.
    Lankadeva YR; Kosaka J; Evans RG; Bellomo R; May CN
    Crit Care Med; 2018 Jan; 46(1):e41-e48. PubMed ID: 29077618
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Factors that confound the prediction of renal medullary oxygenation and risk of acute kidney injury from measurement of bladder urine oxygen tension.
    Ngo JP; Lankadeva YR; Zhu MZL; Martin A; Kanki M; Cochrane AD; Smith JA; Thrift AG; May CN; Evans RG
    Acta Physiol (Oxf); 2019 Sep; 227(1):e13294. PubMed ID: 31066975
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Renal medullary and urinary oxygen tension during cardiopulmonary bypass in the rat.
    Sgouralis I; Evans RG; Layton AT
    Math Med Biol; 2017 Sep; 34(3):313-333. PubMed ID: 27281792
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alterations in regional kidney oxygenation during expansion of extracellular fluid volume in conscious healthy sheep.
    Lankadeva YR; Evans RG; Kosaka J; Booth LC; Iguchi N; Bellomo R; May CN
    Am J Physiol Regul Integr Comp Physiol; 2018 Dec; 315(6):R1242-R1250. PubMed ID: 30332304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Furosemide reverses medullary tissue hypoxia in ovine septic acute kidney injury.
    Iguchi N; Lankadeva YR; Mori TA; Osawa EA; Cutuli SL; Evans RG; Bellomo R; May CN
    Am J Physiol Regul Integr Comp Physiol; 2019 Aug; 317(2):R232-R239. PubMed ID: 31141418
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intrarenal and urinary oxygenation during norepinephrine resuscitation in ovine septic acute kidney injury.
    Lankadeva YR; Kosaka J; Evans RG; Bailey SR; Bellomo R; May CN
    Kidney Int; 2016 Jul; 90(1):100-8. PubMed ID: 27165831
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impacts of nitric oxide and superoxide on renal medullary oxygen transport and urine concentration.
    Fry BC; Edwards A; Layton AT
    Am J Physiol Renal Physiol; 2015 May; 308(9):F967-80. PubMed ID: 25651567
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adjusting cardiopulmonary bypass flow or arterial pressure to maintain renal medullary oxygen.
    Joles JA
    Kidney Int; 2019 Jun; 95(6):1292-1293. PubMed ID: 31122704
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analysis of the critical determinants of renal medullary oxygenation.
    Lee CJ; Gardiner BS; Evans RG; Smith DW
    Am J Physiol Renal Physiol; 2019 Dec; 317(6):F1483-F1502. PubMed ID: 31482732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strategies that improve renal medullary oxygenation during experimental cardiopulmonary bypass may mitigate postoperative acute kidney injury.
    Lankadeva YR; Cochrane AD; Marino B; Iguchi N; Hood SG; Bellomo R; May CN; Evans RG
    Kidney Int; 2019 Jun; 95(6):1338-1346. PubMed ID: 31005272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of Fluid Bolus Therapy on Renal Perfusion, Oxygenation, and Function in Early Experimental Septic Kidney Injury.
    Lankadeva YR; Kosaka J; Iguchi N; Evans RG; Booth LC; Bellomo R; May CN
    Crit Care Med; 2019 Jan; 47(1):e36-e43. PubMed ID: 30394921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anemia increases the risk of renal cortical and medullary hypoxia during cardiopulmonary bypass.
    Darby PJ; Kim N; Hare GM; Tsui A; Wang Z; Harrington A; Mazer CD
    Perfusion; 2013 Nov; 28(6):504-11. PubMed ID: 23719516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A model of oxygen transport in the rat renal medulla.
    Lee CJ; Gardiner BS; Evans RG; Smith DW
    Am J Physiol Renal Physiol; 2018 Dec; 315(6):F1787-F1811. PubMed ID: 30256129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adenosine A1 receptors in contrast media-induced renal dysfunction in the normal rat.
    Liss P; Carlsson PO; Palm F; Hansell P
    Eur Radiol; 2004 Jul; 14(7):1297-302. PubMed ID: 14714138
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Continuous bladder urinary oxygen tension as a new tool to monitor medullary oxygenation in the critically ill.
    Hu RT; Lankadeva YR; Yanase F; Osawa EA; Evans RG; Bellomo R
    Crit Care; 2022 Dec; 26(1):389. PubMed ID: 36527088
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Renal medullary hypoxia during experimental cardiopulmonary bypass: a pilot study.
    Stafford-Smith M; Grocott HP
    Perfusion; 2005 Jan; 20(1):53-8. PubMed ID: 15751671
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Renal medullary tissue oxygenation is dependent on both cortical and medullary blood flow.
    O'Connor PM; Kett MM; Anderson WP; Evans RG
    Am J Physiol Renal Physiol; 2006 Mar; 290(3):F688-94. PubMed ID: 16219913
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.