These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 27385734)

  • 21. Myoglobinuric acute renal failure in the rat: a role for medullary hypoperfusion, hypoxia, and tubular obstruction.
    Heyman SN; Rosen S; Fuchs S; Epstein FH; Brezis M
    J Am Soc Nephrol; 1996 Jul; 7(7):1066-74. PubMed ID: 8829123
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Acute SGLT inhibition normalizes O2 tension in the renal cortex but causes hypoxia in the renal medulla in anaesthetized control and diabetic rats.
    O'Neill J; Fasching A; Pihl L; Patinha D; Franzén S; Palm F
    Am J Physiol Renal Physiol; 2015 Aug; 309(3):F227-34. PubMed ID: 26041448
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protective effect of angiotensin II-induced increase in nitric oxide in the renal medullary circulation.
    Zou AP; Wu F; Cowley AW
    Hypertension; 1998 Jan; 31(1 Pt 2):271-6. PubMed ID: 9453315
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Measurement of renal tissue oxygenation with blood oxygen level-dependent MRI and oxygen transit modeling.
    Zhang JL; Morrell G; Rusinek H; Warner L; Vivier PH; Cheung AK; Lerman LO; Lee VS
    Am J Physiol Renal Physiol; 2014 Mar; 306(6):F579-87. PubMed ID: 24452640
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Urinary oxygen tension measurement in humans using magnetic resonance imaging.
    Wang ZJ; Joe BN; Coakley FV; Zaharchuk G; Busse R; Yeh BM
    Acad Radiol; 2008 Nov; 15(11):1467-73. PubMed ID: 18995198
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Urinary oxygen tension and its role in predicting acute kidney injury: A narrative review.
    Wang JY; Song QL; Wang YL; Jiang ZM
    J Clin Anesth; 2024 May; 93():111359. PubMed ID: 38061226
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Distribution of renal cortical and Medullary tissue oxygenation in hemorrhagic shock.
    Nelimarkka O; Halkola L; Niinikoski J
    Acta Chir Scand; 1982; 148(3):213-9. PubMed ID: 7136420
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of the vasopressin V1 agonist [Phe2,Ile3,Orn8]] vasopressin on regional kidney perfusion and renal excretory function in anesthetized rabbits.
    Evans RG; Bergström G; Lawrence AJ
    J Cardiovasc Pharmacol; 1998 Oct; 32(4):571-81. PubMed ID: 9781925
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comparative modeling study of the mitochondrial function of the proximal tubule and thick ascending limb cells in the rat kidney.
    Layton AT
    Am J Physiol Renal Physiol; 2024 Feb; 326(2):F189-F201. PubMed ID: 37994410
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Variable responses of regional renal oxygenation and perfusion to vasoactive agents in awake sheep.
    Calzavacca P; Evans RG; Bailey M; Bellomo R; May CN
    Am J Physiol Regul Integr Comp Physiol; 2015 Nov; 309(10):R1226-33. PubMed ID: 26354843
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of acute changes in renal arterial blood flow on urine oxygen tension in dogs.
    Kainuma M; Kimura N; Shimada Y
    Crit Care Med; 1990 Mar; 18(3):309-12. PubMed ID: 2302958
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of nitric-oxide-mediated vasodilation and oxidative stress on renal medullary oxygenation: a modeling study.
    Fry BC; Edwards A; Layton AT
    Am J Physiol Renal Physiol; 2016 Feb; 310(3):F237-47. PubMed ID: 26831340
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Changes in renal medullary pO2 during water diuresis as evaluated by blood oxygenation level-dependent magnetic resonance imaging: effects of aging and cyclooxygenase inhibition.
    Prasad PV; Epstein FH
    Kidney Int; 1999 Jan; 55(1):294-8. PubMed ID: 9893139
    [TBL] [Abstract][Full Text] [Related]  

  • 34. BOLD quantified renal pO2 is sensitive to pharmacological challenges in rats.
    Thacker J; Zhang JL; Franklin T; Prasad P
    Magn Reson Med; 2017 Jul; 78(1):297-302. PubMed ID: 27501515
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Role of nitric oxide in renal medullary oxygenation. Studies in isolated and intact rat kidneys.
    Brezis M; Heyman SN; Dinour D; Epstein FH; Rosen S
    J Clin Invest; 1991 Aug; 88(2):390-5. PubMed ID: 1864953
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Cortical and Medullary Tissue Perfusion and Oxygenation in Experimental Septic Acute Kidney Injury.
    Calzavacca P; Evans RG; Bailey M; Bellomo R; May CN
    Crit Care Med; 2015 Oct; 43(10):e431-9. PubMed ID: 26181218
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Determinants of intrarenal oxygenation. I. Effects of diuretics.
    Brezis M; Agmon Y; Epstein FH
    Am J Physiol; 1994 Dec; 267(6 Pt 2):F1059-62. PubMed ID: 7810692
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Diversity of responses of renal cortical and medullary blood flow to vasoconstrictors in conscious rabbits.
    Evans RG; Madden AC; Denton KM
    Acta Physiol Scand; 2000 Aug; 169(4):297-308. PubMed ID: 10951121
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of adenosine on intrarenal oxygenation.
    Dinour D; Brezis M
    Am J Physiol; 1991 Nov; 261(5 Pt 2):F787-91. PubMed ID: 1951710
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Detailing the relation between renal T2* and renal tissue pO2 using an integrated approach of parametric magnetic resonance imaging and invasive physiological measurements.
    Pohlmann A; Arakelyan K; Hentschel J; Cantow K; Flemming B; Ladwig M; Waiczies S; Seeliger E; Niendorf T
    Invest Radiol; 2014 Aug; 49(8):547-60. PubMed ID: 24651661
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.