These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 27385785)

  • 1. Improving the measurement of dielectric function by TEM-EELS: avoiding the retardation effect.
    Sakaguchi N; Tanda L; Kunisada Y
    Microscopy (Oxf); 2016 Oct; 65(5):415-421. PubMed ID: 27385785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Measurement of the dielectric function of α-Al2O3 by transmission electron microscopy - Electron energy-loss spectroscopy without Cerenkov radiation effects.
    Sakaguchi N; Tanda L; Kunisada Y
    Ultramicroscopy; 2016 Oct; 169():37-43. PubMed ID: 27448199
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Treating retardation effects in valence EELS spectra for Kramers-Kronig analysis.
    Stöger-Pollach M; Laister A; Schattschneider P
    Ultramicroscopy; 2008 Apr; 108(5):439-44. PubMed ID: 17689868
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and application of a relativistic Kramers-Kronig analysis algorithm.
    Eljarrat A; Koch CT
    Ultramicroscopy; 2019 Nov; 206():112825. PubMed ID: 31400584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bandgap measurement of thin dielectric films using monochromated STEM-EELS.
    Park J; Heo S; Chung JG; Kim H; Lee H; Kim K; Park GS
    Ultramicroscopy; 2009 Aug; 109(9):1183-8. PubMed ID: 19515492
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comment on "Investigation on optical properties of ZnO nanowires by electron energy-loss spectroscopy".
    Stöger-Pollach M; Galek T
    Micron; 2006; 37(8):748-50. PubMed ID: 16621579
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the validity of the Čerenkov limit as a criterion for precise band gap measurements by VEELS.
    Erni R
    Ultramicroscopy; 2016 Jan; 160():80-83. PubMed ID: 26476018
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High energy-resolution electron energy-loss spectroscopy study of the dielectric properties of multi-shell nanoparticles.
    Nakahigashi N; Sato Y; Terauchi M; Uehara M
    Microscopy (Oxf); 2014 Nov; 63 Suppl 1():i18. PubMed ID: 25359810
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validity of the dipole approximation in TEM-EELS studies.
    Egerton RF; Mcleod RA; Malac M
    Microsc Res Tech; 2014 Oct; 77(10):773-8. PubMed ID: 25045082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Band gap measurement by nano-beam STEM with small off-axis angle transmission electron energy loss spectroscopy (TEELS).
    Wang YY; Jin Q; Zhuang K; Choi JK; Nxumalo J
    Ultramicroscopy; 2021 Jan; 220():113164. PubMed ID: 33186852
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cerenkov losses: a limit for bandgap determination and Kramers-Kronig analysis.
    Stöger-Pollach M; Franco H; Schattschneider P; Lazar S; Schaffer B; Grogger W; Zandbergen HW
    Micron; 2006; 37(5):396-402. PubMed ID: 16551502
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative parameters for the examination of InGaN QW multilayers by low-loss EELS.
    Eljarrat A; López-Conesa L; Magén C; García-Lepetit N; Gačević Ž; Calleja E; Peiró F; Estradé S
    Phys Chem Chem Phys; 2016 Aug; 18(33):23264-76. PubMed ID: 27499340
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale EELS analysis of dielectric function and bandgap properties in gaN and related materials.
    Brockt G; Lakner H
    Micron; 2000 Aug; 31(4):435-40. PubMed ID: 10741613
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optoelectronic properties of InAlN/GaN distributed bragg reflector heterostructure examined by valence electron energy loss spectroscopy.
    Eljarrat A; Estradé S; Gačević Z; Fernández-Garrido S; Calleja E; Magén C; Peiró F
    Microsc Microanal; 2012 Oct; 18(5):1143-54. PubMed ID: 23058502
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electronic and optical properties of Cu, CuO and Cu2O studied by electron spectroscopy.
    Tahir D; Tougaard S
    J Phys Condens Matter; 2012 May; 24(17):175002. PubMed ID: 22475683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-resolved spectra from millivolt EELS data.
    Li C; Subramanian G; Spence JC
    Microsc Microanal; 2014 Jun; 20(3):837-46. PubMed ID: 24878029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optical properties and bandgaps from low loss EELS: pitfalls and solutions.
    Stöger-Pollach M
    Micron; 2008 Dec; 39(8):1092-110. PubMed ID: 18395457
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Derivation of optical properties of carbonaceous aerosols by monochromated electron energy-loss spectroscopy.
    Zhu J; Crozier PA; Ercius P; Anderson JR
    Microsc Microanal; 2014 Jun; 20(3):748-59. PubMed ID: 24735494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complex dielectric function and opto-electronic characterization using VEELS for the lead-free BCZT electro-ceramic perovskite.
    Herrera-Pérez G; Ornelas-Gutiérrez C; Reyes-Montero A; Paraguay-Delgado F; Reyes-Rojas A; Fuentes-Cobas L
    Micron; 2021 Oct; 149():103124. PubMed ID: 34314943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thickness measurements with electron energy loss spectroscopy.
    Iakoubovskii K; Mitsuishi K; Nakayama Y; Furuya K
    Microsc Res Tech; 2008 Aug; 71(8):626-31. PubMed ID: 18454473
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.