These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 27386793)

  • 1. A global test for gene-gene interactions based on random matrix theory.
    Frost HR; Amos CI; Moore JH
    Genet Epidemiol; 2016 Dec; 40(8):689-701. PubMed ID: 27386793
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Novel Approach to Detecting Epistasis using Random Sampling Regularisation.
    Hind J; Lisboa P; Hussain AJ; Al-Jumeily D
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(5):1535-1545. PubMed ID: 31634840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identifying significant gene-environment interactions using a combination of screening testing and hierarchical false discovery rate control.
    Frost HR; Shen L; Saykin AJ; Williams SM; Moore JH;
    Genet Epidemiol; 2016 Nov; 40(7):544-557. PubMed ID: 27578615
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BOOST: A fast approach to detecting gene-gene interactions in genome-wide case-control studies.
    Wan X; Yang C; Yang Q; Xue H; Fan X; Tang NL; Yu W
    Am J Hum Genet; 2010 Sep; 87(3):325-40. PubMed ID: 20817139
    [TBL] [Abstract][Full Text] [Related]  

  • 5. AGGrEGATOr: A Gene-based GEne-Gene interActTiOn test for case-control association studies.
    Emily M
    Stat Appl Genet Mol Biol; 2016 Apr; 15(2):151-71. PubMed ID: 26913459
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene, pathway and network frameworks to identify epistatic interactions of single nucleotide polymorphisms derived from GWAS data.
    Liu Y; Maxwell S; Feng T; Zhu X; Elston RC; Koyutürk M; Chance MR
    BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S15. PubMed ID: 23281810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying genetic marker sets associated with phenotypes via an efficient adaptive score test.
    Cai T; Lin X; Carroll RJ
    Biostatistics; 2012 Sep; 13(4):776-90. PubMed ID: 22734045
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of epistasis detection methods in semi-simulated GWAS.
    Chatelain C; Durand G; Thuillier V; Augé F
    BMC Bioinformatics; 2018 Jun; 19(1):231. PubMed ID: 29914375
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A system-level pathway-phenotype association analysis using synthetic feature random forest.
    Pan Q; Hu T; Malley JD; Andrew AS; Karagas MR; Moore JH
    Genet Epidemiol; 2014 Apr; 38(3):209-19. PubMed ID: 24535726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. HiSSI: high-order SNP-SNP interactions detection based on efficient significant pattern and differential evolution.
    Cao X; Liu J; Guo M; Wang J
    BMC Med Genomics; 2019 Dec; 12(Suppl 7):139. PubMed ID: 31888641
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modified entropy-based procedure detects gene-gene-interactions in unconventional genetic models.
    Malten J; König IR
    BMC Med Genomics; 2020 Apr; 13(1):65. PubMed ID: 32326960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A modified entropy-based approach for identifying gene-gene interactions in case-control study.
    Yee J; Kwon MS; Park T; Park M
    PLoS One; 2013; 8(7):e69321. PubMed ID: 23874943
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome-wide genetic interaction analysis of glaucoma using expert knowledge derived from human phenotype networks.
    Hu T; Darabos C; Cricco ME; Kong E; Moore JH
    Pac Symp Biocomput; 2015; 20():207-18. PubMed ID: 25592582
    [TBL] [Abstract][Full Text] [Related]  

  • 14. GWIS--model-free, fast and exhaustive search for epistatic interactions in case-control GWAS.
    Goudey B; Rawlinson D; Wang Q; Shi F; Ferra H; Campbell RM; Stern L; Inouye MT; Ong CS; Kowalczyk A
    BMC Genomics; 2013; 14 Suppl 3(Suppl 3):S10. PubMed ID: 23819779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inclusion of gene-gene and gene-environment interactions unlikely to dramatically improve risk prediction for complex diseases.
    Aschard H; Chen J; Cornelis MC; Chibnik LB; Karlson EW; Kraft P
    Am J Hum Genet; 2012 Jun; 90(6):962-72. PubMed ID: 22633398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A gene-based information gain method for detecting gene-gene interactions in case-control studies.
    Li J; Huang D; Guo M; Liu X; Wang C; Teng Z; Zhang R; Jiang Y; Lv H; Wang L
    Eur J Hum Genet; 2015 Nov; 23(11):1566-72. PubMed ID: 25758991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SNPInterForest: a new method for detecting epistatic interactions.
    Yoshida M; Koike A
    BMC Bioinformatics; 2011 Dec; 12():469. PubMed ID: 22151604
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TSGSIS: a high-dimensional grouped variable selection approach for detection of whole-genome SNP-SNP interactions.
    Fang YH; Wang JH; Hsiung CA
    Bioinformatics; 2017 Nov; 33(22):3595-3602. PubMed ID: 28651334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene-based testing of interactions in association studies of quantitative traits.
    Ma L; Clark AG; Keinan A
    PLoS Genet; 2013; 9(2):e1003321. PubMed ID: 23468652
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A whole-genome simulator capable of modeling high-order epistasis for complex disease.
    Yang W; Gu CC
    Genet Epidemiol; 2013 Nov; 37(7):686-94. PubMed ID: 24114848
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.