These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Characterization and in vitro evaluation of electrospun chitosan/polycaprolactone blend fibrous mat for skin tissue engineering. Prasad T; Shabeena EA; Vinod D; Kumary TV; Anil Kumar PR J Mater Sci Mater Med; 2015 Jan; 26(1):5352. PubMed ID: 25578706 [TBL] [Abstract][Full Text] [Related]
5. Electrospun chitosan-graft-poly (ε -caprolactone)/poly (ε-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering. Chen H; Huang J; Yu J; Liu S; Gu P Int J Biol Macromol; 2011 Jan; 48(1):13-9. PubMed ID: 20933540 [TBL] [Abstract][Full Text] [Related]
6. Electrospun biocomposite nanofibrous scaffolds for neural tissue engineering. Prabhakaran MP; Venugopal JR; Chyan TT; Hai LB; Chan CK; Lim AY; Ramakrishna S Tissue Eng Part A; 2008 Nov; 14(11):1787-97. PubMed ID: 18657027 [TBL] [Abstract][Full Text] [Related]
7. Effects of nozzle type atmospheric dry air plasma on L929 fibroblast cells hybrid poly (ε-caprolactone)/chitosan/poly (ε-caprolactone) scaffolds interactions. Ozkan O; Turkoglu Sasmazel H J Biosci Bioeng; 2016 Aug; 122(2):232-9. PubMed ID: 26906227 [TBL] [Abstract][Full Text] [Related]
8. Electrospun polycaprolactone/chitosan scaffolds for nerve tissue engineering: physicochemical characterization and Schwann cell biocompatibility. Bolaina-Lorenzo E; Martínez-Ramos C; Monleón-Pradas M; Herrera-Kao W; Cauich-Rodríguez JV; Cervantes-Uc JM Biomed Mater; 2016 Dec; 12(1):015008. PubMed ID: 27934786 [TBL] [Abstract][Full Text] [Related]
9. Shish-kebab-structured poly(ε-caprolactone) nanofibers hierarchically decorated with chitosan-poly(ε-caprolactone) copolymers for bone tissue engineering. Jing X; Mi HY; Wang XC; Peng XF; Turng LS ACS Appl Mater Interfaces; 2015 Apr; 7(12):6955-65. PubMed ID: 25761418 [TBL] [Abstract][Full Text] [Related]
10. Structural and Surface Compatibility Study of Modified Electrospun Poly(ε-caprolactone) (PCL) Composites for Skin Tissue Engineering. Ghosal K; Manakhov A; Zajíčková L; Thomas S AAPS PharmSciTech; 2017 Jan; 18(1):72-81. PubMed ID: 26883261 [TBL] [Abstract][Full Text] [Related]
11. Novel hybrid scaffolds for the cultivation of osteoblast cells. Sasmazel HT Int J Biol Macromol; 2011 Nov; 49(4):838-46. PubMed ID: 21839769 [TBL] [Abstract][Full Text] [Related]
12. Preparation of electrospun PCL-based scaffolds by mono/multi-functionalized GO. Basar AO; Sadhu V; Turkoglu Sasmazel H Biomed Mater; 2019 May; 14(4):045012. PubMed ID: 31067511 [TBL] [Abstract][Full Text] [Related]
13. Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: assessment of the physical properties and cellular response. Thuaksuban N; Nuntanaranont T; Pattanachot W; Suttapreyasri S; Cheung LK Biomed Mater; 2011 Feb; 6(1):015009. PubMed ID: 21205996 [TBL] [Abstract][Full Text] [Related]
14. Development of an in-process UV-crosslinked, electrospun PCL/aPLA-co-TMC composite polymer for tubular tissue engineering applications. Stefani I; Cooper-White JJ Acta Biomater; 2016 May; 36():231-40. PubMed ID: 26969522 [TBL] [Abstract][Full Text] [Related]
15. 2-N, 6-O-sulfated chitosan-assisted BMP-2 immobilization of PCL scaffolds for enhanced osteoinduction. Cao L; Yu Y; Wang J; Werkmeister JA; McLean KM; Liu C Mater Sci Eng C Mater Biol Appl; 2017 May; 74():298-306. PubMed ID: 28254298 [TBL] [Abstract][Full Text] [Related]
16. Gradient nanofibrous chitosan/poly ɛ-caprolactone scaffolds as extracellular microenvironments for vascular tissue engineering. Du F; Wang H; Zhao W; Li D; Kong D; Yang J; Zhang Y Biomaterials; 2012 Jan; 33(3):762-70. PubMed ID: 22056285 [TBL] [Abstract][Full Text] [Related]
17. Coaxially electrospun scaffolds based on hydroxyl-functionalized poly(ε-caprolactone) and loaded with VEGF for tissue engineering applications. Seyednejad H; Ji W; Yang F; van Nostrum CF; Vermonden T; van den Beucken JJ; Dhert WJ; Hennink WE; Jansen JA Biomacromolecules; 2012 Nov; 13(11):3650-60. PubMed ID: 23039047 [TBL] [Abstract][Full Text] [Related]
18. A novel fibrous scaffold composed of electrospun porous poly (epsilon-caprolactone) fibers for bone tissue engineering. Nguyen TH; Bao TQ; Park I; Lee BT J Biomater Appl; 2013 Nov; 28(4):514-28. PubMed ID: 23075833 [TBL] [Abstract][Full Text] [Related]
19. A vascular tissue engineering scaffold with core-shell structured nano-fibers formed by coaxial electrospinning and its biocompatibility evaluation. Duan N; Geng X; Ye L; Zhang A; Feng Z; Guo L; Gu Y Biomed Mater; 2016 May; 11(3):035007. PubMed ID: 27206161 [TBL] [Abstract][Full Text] [Related]
20. Surface modification of nanofibrous polycaprolactone/gelatin composite scaffold by collagen type I grafting for skin tissue engineering. Gautam S; Chou CF; Dinda AK; Potdar PD; Mishra NC Mater Sci Eng C Mater Biol Appl; 2014 Jan; 34():402-9. PubMed ID: 24268275 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]