BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 27387523)

  • 1. Superoxide dismutase 2 knockdown leads to defects in locomotor activity, sensitivity to paraquat, and increased cuticle pigmentation in Tribolium castaneum.
    Tabunoki H; Gorman MJ; Dittmer NT; Kanost MR
    Sci Rep; 2016 Jul; 6():29583. PubMed ID: 27387523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Major Facilitator Superfamily protein encoded by TcMucK gene is not required for cuticle pigmentation, growth and development in Tribolium castaneum.
    Mun S; Noh MY; Osanai-Futahashi M; Muthukrishnan S; Kramer KJ; Arakane Y
    Insect Biochem Mol Biol; 2014 Jun; 49():43-8. PubMed ID: 24681434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular and functional analyses of amino acid decarboxylases involved in cuticle tanning in Tribolium castaneum.
    Arakane Y; Lomakin J; Beeman RW; Muthukrishnan S; Gehrke SH; Kanost MR; Kramer KJ
    J Biol Chem; 2009 Jun; 284(24):16584-16594. PubMed ID: 19366687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arylalkylamine N-acetyltransferase 1 gene (TcAANAT1) is required for cuticle morphology and pigmentation of the adult red flour beetle, Tribolium castaneum.
    Noh MY; Koo B; Kramer KJ; Muthukrishnan S; Arakane Y
    Insect Biochem Mol Biol; 2016 Dec; 79():119-129. PubMed ID: 27816487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laccase 2 is the phenoloxidase gene required for beetle cuticle tanning.
    Arakane Y; Muthukrishnan S; Beeman RW; Kanost MR; Kramer KJ
    Proc Natl Acad Sci U S A; 2005 Aug; 102(32):11337-42. PubMed ID: 16076951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of function of the yellow-e gene causes dehydration-induced mortality of adult Tribolium castaneum.
    Noh MY; Kramer KJ; Muthukrishnan S; Beeman RW; Kanost MR; Arakane Y
    Dev Biol; 2015 Mar; 399(2):315-24. PubMed ID: 25614237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Involvement of the transcription factor E75 in adult cuticular formation in the red flour beetle Tribolium castaneum.
    Sapin GD; Tomoda K; Tanaka S; Shinoda T; Miura K; Minakuchi C
    Insect Biochem Mol Biol; 2020 Nov; 126():103450. PubMed ID: 32818622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Both UDP N-acetylglucosamine pyrophosphorylases of Tribolium castaneum are critical for molting, survival and fecundity.
    Arakane Y; Baguinon MC; Jasrapuria S; Chaudhari S; Doyungan A; Kramer KJ; Muthukrishnan S; Beeman RW
    Insect Biochem Mol Biol; 2011 Jan; 41(1):42-50. PubMed ID: 20920581
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RNA-Seq Validation of RNAi Identifies Additional Gene Connectivity in Tribolium castaneum (Coleoptera: Tenebrionidae).
    Perkin LC; Gerken AR; Oppert B
    J Insect Sci; 2017 Jan; 17(2):. PubMed ID: 28423418
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MicroRNA-dependent regulation of metamorphosis and identification of microRNAs in the red flour beetle, Tribolium castaneum.
    Wu W; Xiong W; Li C; Zhai M; Li Y; Ma F; Li B
    Genomics; 2017 Oct; 109(5-6):362-373. PubMed ID: 28624536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histone deacetylase 3 is required for development and metamorphosis in the red flour beetle, Tribolium castaneum.
    George S; Palli SR
    BMC Genomics; 2020 Jun; 21(1):420. PubMed ID: 32571203
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular characterization of class I histone deacetylases and their expression in response to thermal and oxidative stresses in the red flour beetle, Tribolium castaneum.
    Chen M; Zhang N; Jiang H; Meng X; Qian K; Wang J
    Genetica; 2019 Aug; 147(3-4):281-290. PubMed ID: 31055674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. cDNA Cloning and Partial Characterization of the
    Sasaki S; Nishiko M; Sakamoto T; Kanost MR; Tabunoki H
    Antioxidants (Basel); 2021 Dec; 10(12):. PubMed ID: 34943073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification, mRNA expression and functional analysis of several yellow family genes in Tribolium castaneum.
    Arakane Y; Dittmer NT; Tomoyasu Y; Kramer KJ; Muthukrishnan S; Beeman RW; Kanost MR
    Insect Biochem Mol Biol; 2010 Mar; 40(3):259-66. PubMed ID: 20149870
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Larval RNA interference in the red flour beetle, Tribolium castaneum.
    Linz DM; Clark-Hachtel CM; BorrĂ s-Castells F; Tomoyasu Y
    J Vis Exp; 2014 Oct; (92):e52059. PubMed ID: 25350485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tyrosine hydroxylase is required for cuticle sclerotization and pigmentation in Tribolium castaneum.
    Gorman MJ; Arakane Y
    Insect Biochem Mol Biol; 2010 Mar; 40(3):267-73. PubMed ID: 20080183
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional analysis of the ATP-binding cassette (ABC) transporter gene family of Tribolium castaneum.
    Broehan G; Kroeger T; Lorenzen M; Merzendorfer H
    BMC Genomics; 2013 Jan; 14():6. PubMed ID: 23324493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PDP1 regulates energy metabolism through the IIS-TOR pathway in the red flour beetle, Tribolium castaneum.
    Li Z; Jiang J; Chen Y; You L; Huang Y; Tan A; Li Z; Jiang J; Niu B; Meng Z
    Arch Insect Biochem Physiol; 2014 Mar; 85(3):127-36. PubMed ID: 24478036
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA interference-mediated functional characterization of aquaporin genes in Tribolium castaneum.
    Yao XX; Meng QW; Li GQ
    Insect Mol Biol; 2018 Apr; 27(2):234-246. PubMed ID: 29235691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of laccase2 and yellow-e genes in antifungal host defense of the model beetle, Tribolium castaneum.
    Hayakawa Y; Sawada M; Seki M; Sirasoonthorn P; Shiga S; Kamiya K; Minakuchi C; Miura K
    J Invertebr Pathol; 2018 Jan; 151():41-49. PubMed ID: 29102780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.