BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

239 related articles for article (PubMed ID: 27387605)

  • 1.
    Liu N; Qiao K; Stephanopoulos G
    Metab Eng; 2016 Nov; 38():86-97. PubMed ID: 27387605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The oxidative pentose phosphate pathway is the primary source of NADPH for lipid overproduction from glucose in Yarrowia lipolytica.
    Wasylenko TM; Ahn WS; Stephanopoulos G
    Metab Eng; 2015 Jul; 30():27-39. PubMed ID: 25747307
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Metabolic Flux Analysis of Lipid Biosynthesis in the Yeast Yarrowia lipolytica Using 13C-Labled Glucose and Gas Chromatography-Mass Spectrometry.
    Zhang H; Wu C; Wu Q; Dai J; Song Y
    PLoS One; 2016; 11(7):e0159187. PubMed ID: 27454589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Understanding lipogenesis by dynamically profiling transcriptional activity of lipogenic promoters in Yarrowia lipolytica.
    Liu H; Marsafari M; Deng L; Xu P
    Appl Microbiol Biotechnol; 2019 Apr; 103(7):3167-3179. PubMed ID: 30734122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substrates and oxygen dependent citric acid production by Yarrowia lipolytica: insights through transcriptome and fluxome analyses.
    Sabra W; Bommareddy RR; Maheshwari G; Papanikolaou S; Zeng AP
    Microb Cell Fact; 2017 May; 16(1):78. PubMed ID: 28482902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. (13)C metabolic flux analysis of the extremely thermophilic, fast growing, xylose-utilizing Geobacillus strain LC300.
    Cordova LT; Antoniewicz MR
    Metab Eng; 2016 Jan; 33():148-157. PubMed ID: 26100076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evidence for transketolase-like TKTL1 flux in CHO cells based on parallel labeling experiments and (13)C-metabolic flux analysis.
    Ahn WS; Crown SB; Antoniewicz MR
    Metab Eng; 2016 Sep; 37():72-78. PubMed ID: 27174718
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional overexpression and characterization of lipogenesis-related genes in the oleaginous yeast Yarrowia lipolytica.
    Silverman AM; Qiao K; Xu P; Stephanopoulos G
    Appl Microbiol Biotechnol; 2016 Apr; 100(8):3781-98. PubMed ID: 26915993
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased Lipid Production in
    Chen L; Yan W; Qian X; Chen M; Zhang X; Xin F; Zhang W; Jiang M; Ochsenreither K
    ACS Synth Biol; 2021 Nov; 10(11):3129-3138. PubMed ID: 34714052
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bio-oil production for biodiesel industry by Yarrowia lipolytica from volatile fatty acids in two-stage batch culture.
    Pereira AS; Lopes M; Miranda SM; Belo I
    Appl Microbiol Biotechnol; 2022 Apr; 106(8):2869-2881. PubMed ID: 35394162
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering acetyl-CoA metabolic shortcut for eco-friendly production of polyketides triacetic acid lactone in Yarrowia lipolytica.
    Liu H; Marsafari M; Wang F; Deng L; Xu P
    Metab Eng; 2019 Dec; 56():60-68. PubMed ID: 31470116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering Yarrowia lipolytica for the production of cyclopropanated fatty acids.
    Markham KA; Alper HS
    J Ind Microbiol Biotechnol; 2018 Oct; 45(10):881-888. PubMed ID: 30120620
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica.
    Ryu S; Trinh CT
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of lipid production with a genome-scale model of Yarrowia lipolytica.
    Kavšček M; Bhutada G; Madl T; Natter K
    BMC Syst Biol; 2015 Oct; 9():72. PubMed ID: 26503450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of transketolase on lipid biosynthesis in the yeast Yarrowia lipolytica.
    Dobrowolski A; Mirończuk AM
    Microb Cell Fact; 2020 Jul; 19(1):138. PubMed ID: 32653007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Factors affecting microbial lipids production by Yarrowia lipolytica strains from volatile fatty acids: Effect of co-substrates, operation mode and oxygen.
    Pereira AS; Miranda SM; Lopes M; Belo I
    J Biotechnol; 2021 Apr; 331():37-47. PubMed ID: 33652072
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Catabolite regulation analysis of Escherichia coli for acetate overflow mechanism and co-consumption of multiple sugars based on systems biology approach using computer simulation.
    Matsuoka Y; Shimizu K
    J Biotechnol; 2013 Oct; 168(2):155-73. PubMed ID: 23850830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of carbon source on lipid accumulation and biodiesel production of Yarrowia lipolytica.
    Chai B; Wang Y; Wang W; Fan P
    Environ Sci Pollut Res Int; 2019 Oct; 26(30):31234-31242. PubMed ID: 31463748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. D-stat culture for studying the metabolic shifts from oxidative metabolism to lipid accumulation and citric acid production in Yarrowia lipolytica.
    Ochoa-Estopier A; Guillouet SE
    J Biotechnol; 2014 Jan; 170():35-41. PubMed ID: 24316225
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolic engineering in the host Yarrowia lipolytica.
    Abdel-Mawgoud AM; Markham KA; Palmer CM; Liu N; Stephanopoulos G; Alper HS
    Metab Eng; 2018 Nov; 50():192-208. PubMed ID: 30056205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.