BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 27387903)

  • 1. Dynamic material characterization of the human heel pad based on in vivo experimental tests and numerical analysis.
    Kardeh M; Vogl TJ; Huebner F; Nelson K; Stief F; Silber G
    Med Eng Phys; 2016 Sep; 38(9):940-5. PubMed ID: 27387903
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating the material properties of heel pad sub-layers using inverse Finite Element Analysis.
    Ahanchian N; Nester CJ; Howard D; Ren L; Parker D
    Med Eng Phys; 2017 Feb; 40():11-19. PubMed ID: 27913178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation on the load-displacement curves of a human healthy heel pad: In vivo compression data compared to numerical results.
    Fontanella CG; Matteoli S; Carniel EL; Wilhjelm JE; Virga A; Corvi A; Natali AN
    Med Eng Phys; 2012 Nov; 34(9):1253-9. PubMed ID: 22265099
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A clinically applicable non-invasive method to quantitatively assess the visco-hyperelastic properties of human heel pad, implications for assessing the risk of mechanical trauma.
    Behforootan S; Chatzistergos PE; Chockalingam N; Naemi R
    J Mech Behav Biomed Mater; 2017 Apr; 68():287-295. PubMed ID: 28222391
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A three-dimensional inverse finite element analysis of the heel pad.
    Chokhandre S; Halloran JP; van den Bogert AJ; Erdemir A
    J Biomech Eng; 2012 Mar; 134(3):031002. PubMed ID: 22482682
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigations on the viscoelastic behaviour of a human healthy heel pad: in vivo compression tests and numerical analysis.
    Matteoli S; Fontanella CG; Carniel EL; Wilhjelm JE; Virga A; Corbinz N; Corvi A; Natali AN
    Proc Inst Mech Eng H; 2013 Mar; 227(3):334-42. PubMed ID: 23662350
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parameter identification of hyperelastic material properties of the heel pad based on an analytical contact mechanics model of a spherical indentation.
    Suzuki R; Ito K; Lee T; Ogihara N
    J Mech Behav Biomed Mater; 2017 Jan; 65():753-760. PubMed ID: 27764748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Explicit finite element modelling of heel pad mechanics in running: inclusion of body dynamics and application of physiological impact loads.
    Chen WM; Lee PV
    Comput Methods Biomech Biomed Engin; 2015; 18(14):1582-95. PubMed ID: 24980181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The potential influence of the heel counter on internal stress during static standing: a combined finite element and positional MRI investigation.
    Spears IR; Miller-Young JE; Sharma J; Ker RF; Smith FW
    J Biomech; 2007; 40(12):2774-80. PubMed ID: 17362970
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heel skin stiffness effect on the hind foot biomechanics during heel strike.
    Gu Y; Li J; Ren X; Lake MJ; Zeng Y
    Skin Res Technol; 2010 Aug; 16(3):291-6. PubMed ID: 20636997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of heel pad tissues mechanics at the heel strike in bare and shod conditions.
    Fontanella CG; Forestiero A; Carniel EL; Natali AN
    Med Eng Phys; 2013 Apr; 35(4):441-7. PubMed ID: 22789809
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In-vivo viscous properties of the heel pad by stress-relaxation experiment based on a spherical indentation.
    Suzuki R; Ito K; Lee T; Ogihara N
    Med Eng Phys; 2017 Dec; 50():83-88. PubMed ID: 29079047
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Material properties of the heel fat pad across strain rates.
    Grigoriadis G; Newell N; Carpanen D; Christou A; Bull AMJ; Masouros SD
    J Mech Behav Biomed Mater; 2017 Jan; 65():398-407. PubMed ID: 27643676
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An inverse finite-element model of heel-pad indentation.
    Erdemir A; Viveiros ML; Ulbrecht JS; Cavanagh PR
    J Biomech; 2006; 39(7):1279-86. PubMed ID: 15907330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shear wave elastography can assess the in-vivo nonlinear mechanical behavior of heel-pad.
    Chatzistergos PE; Behforootan S; Allan D; Naemi R; Chockalingam N
    J Biomech; 2018 Oct; 80():144-150. PubMed ID: 30241799
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mathematical method for quantifying in vivo mechanical behaviour of heel pad under dynamic load.
    Naemi R; Chatzistergos PE; Chockalingam N
    Med Biol Eng Comput; 2016 Mar; 54(2-3):341-50. PubMed ID: 26044551
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biomechanical behaviour of heel pad tissue: experimental testing, constitutive formulation, and numerical modelling.
    Natali AN; Fontanella CG; Carniel EL; Young M
    Proc Inst Mech Eng H; 2011 May; 225(5):449-59. PubMed ID: 21755775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calibration of hyperelastic material properties of the human lumbar intervertebral disc under fast dynamic compressive loads.
    Wagnac E; Arnoux PJ; Garo A; El-Rich M; Aubin CE
    J Biomech Eng; 2011 Oct; 133(10):101007. PubMed ID: 22070332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Method for characterizing viscoelasticity of human gluteal tissue.
    Then C; Vogl TJ; Silber G
    J Biomech; 2012 Apr; 45(7):1252-8. PubMed ID: 22360834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomechanical behavior of plantar fat pad in healthy and degenerative foot conditions.
    Fontanella CG; Nalesso F; Carniel EL; Natali AN
    Med Biol Eng Comput; 2016 Apr; 54(4):653-61. PubMed ID: 26272439
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.