These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 27388048)
1. Hybrid chitosan/β-1,3-glucan matrix of bone scaffold enhances osteoblast adhesion, spreading and proliferation via promotion of serum protein adsorption. Przekora A; Benko A; Blazewicz M; Ginalska G Biomed Mater; 2016 Jul; 11(4):045001. PubMed ID: 27388048 [TBL] [Abstract][Full Text] [Related]
2. Biomedical potential of chitosan/HA and chitosan/β-1,3-glucan/HA biomaterials as scaffolds for bone regeneration--A comparative study. Przekora A; Palka K; Ginalska G Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():891-9. PubMed ID: 26478384 [TBL] [Abstract][Full Text] [Related]
3. In vitro evaluation of the risk of inflammatory response after chitosan/HA and chitosan/β-1,3-glucan/HA bone scaffold implantation. Przekora A; Ginalska G Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():355-61. PubMed ID: 26838861 [TBL] [Abstract][Full Text] [Related]
4. Chitosan/β-1,3-glucan/hydroxyapatite bone scaffold enhances osteogenic differentiation through TNF-α-mediated mechanism. Przekora A; Ginalska G Mater Sci Eng C Mater Biol Appl; 2017 Apr; 73():225-233. PubMed ID: 28183603 [TBL] [Abstract][Full Text] [Related]
5. Addition of 1,3-β-D-glucan to chitosan-based composites enhances osteoblast adhesion, growth, and proliferation. Przekora A; Ginalska G Int J Biol Macromol; 2014 Sep; 70():474-81. PubMed ID: 25064557 [TBL] [Abstract][Full Text] [Related]
6. Biological Response to Macroporous Chitosan-Agarose Bone Scaffolds Comprising Mg- and Zn-Doped Nano-Hydroxyapatite. Kazimierczak P; Kolmas J; Przekora A Int J Mol Sci; 2019 Aug; 20(15):. PubMed ID: 31390753 [TBL] [Abstract][Full Text] [Related]
7. New method for the fabrication of highly osteoconductive β-1,3-glucan/HA scaffold for bone tissue engineering: Structural, mechanical, and biological characterization. Klimek K; Przekora A; Pałka K; Ginalska G J Biomed Mater Res A; 2016 Oct; 104(10):2528-36. PubMed ID: 27239050 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of the potential of chitosan/β-1,3-glucan/hydroxyapatite material as a scaffold for living bone graft production in vitro by comparison of ADSC and BMDSC behaviour on its surface. Przekora A; Vandrovcova M; Travnickova M; Pajorova J; Molitor M; Ginalska G; Bacakova L Biomed Mater; 2017 Feb; 12(1):015030. PubMed ID: 28054934 [TBL] [Abstract][Full Text] [Related]
9. Novel chitosan/agarose/hydroxyapatite nanocomposite scaffold for bone tissue engineering applications: comprehensive evaluation of biocompatibility and osteoinductivity with the use of osteoblasts and mesenchymal stem cells. Kazimierczak P; Benko A; Nocun M; Przekora A Int J Nanomedicine; 2019; 14():6615-6630. PubMed ID: 31695360 [TBL] [Abstract][Full Text] [Related]
10. Development of genipin-crosslinked and fucoidan-adsorbed nano-hydroxyapatite/hydroxypropyl chitosan composite scaffolds for bone tissue engineering. Lu HT; Lu TW; Chen CH; Mi FL Int J Biol Macromol; 2019 May; 128():973-984. PubMed ID: 30738901 [TBL] [Abstract][Full Text] [Related]
11. Chitosan/β-1,3-glucan/calcium phosphate ceramics composites--novel cell scaffolds for bone tissue engineering application. Przekora A; Palka K; Ginalska G J Biotechnol; 2014 Jul; 182-183():46-53. PubMed ID: 24815684 [TBL] [Abstract][Full Text] [Related]
12. Enhanced differentiation of osteoblastic cells on novel chitosan/β-1,3-glucan/bioceramic scaffolds for bone tissue regeneration. Przekora A; Ginalska G Biomed Mater; 2015 Jan; 10(1):015009. PubMed ID: 25586067 [TBL] [Abstract][Full Text] [Related]
13. Osteoblast mineralization with composite nanofibrous substrate for bone tissue regeneration. Venugopal JR; Giri Dev VR; Senthilram T; Sathiskumar D; Gupta D; Ramakrishna S Cell Biol Int; 2011 Jan; 35(1):73-80. PubMed ID: 20923413 [TBL] [Abstract][Full Text] [Related]
14. Evaluation of adenoviral vascular endothelial growth factor-activated chitosan/hydroxyapatite scaffold for engineering vascularized bone tissue using human osteoblasts: In vitro and in vivo studies. Koç A; Finkenzeller G; Elçin AE; Stark GB; Elçin YM J Biomater Appl; 2014 Nov; 29(5):748-60. PubMed ID: 25062670 [TBL] [Abstract][Full Text] [Related]
15. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells. Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410 [TBL] [Abstract][Full Text] [Related]
16. [A study on nano-hydroxyapatite-chitosan scaffold for bone tissue engineering]. Wang X; Liu L; Zhang Q Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2007 Feb; 21(2):120-4. PubMed ID: 17357456 [TBL] [Abstract][Full Text] [Related]
17. Chitosan/hydroxyapatite (HA)/hydroxypropylmethyl cellulose (HPMC) spongy scaffolds-synthesis and evaluation as potential alveolar bone substitutes. Iqbal H; Ali M; Zeeshan R; Mutahir Z; Iqbal F; Nawaz MAH; Shahzadi L; Chaudhry AA; Yar M; Luan S; Khan AF; Rehman IU Colloids Surf B Biointerfaces; 2017 Dec; 160():553-563. PubMed ID: 29024920 [TBL] [Abstract][Full Text] [Related]
18. Development of gelatin-chitosan-hydroxyapatite based bioactive bone scaffold with controlled pore size and mechanical strength. Maji K; Dasgupta S; Kundu B; Bissoyi A J Biomater Sci Polym Ed; 2015; 26(16):1190-209. PubMed ID: 26335156 [TBL] [Abstract][Full Text] [Related]