These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 27388132)

  • 1. Self-propulsion of a metallic superoleophobic micro-boat.
    Musin A; Grynyov R; Frenkel M; Bormashenko E
    J Colloid Interface Sci; 2016 Oct; 479():182-188. PubMed ID: 27388132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Camphor-Engine-Driven Micro-Boat Guides Evolution of Chemical Gardens.
    Frenkel M; Multanen V; Grynyov R; Musin A; Bormashenko Y; Bormashenko E
    Sci Rep; 2017 Jun; 7(1):3930. PubMed ID: 28638100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superposition of Translational and Rotational Motions under Self-Propulsion of Liquid Marbles Filled with Aqueous Solutions of Camphor.
    Bormashenko E; Frenkel M; Bormashenko Y; Chaniel G; Valtsifer V; Binks BP
    Langmuir; 2017 Nov; 33(46):13234-13241. PubMed ID: 29083187
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From diffusive mass transfer in Stokes flow to low Reynolds number Marangoni boats.
    Ender H; Kierfeld J
    Eur Phys J E Soft Matter; 2021 Feb; 44(1):4. PubMed ID: 33580288
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ON-OFF Control of Marangoni Self-propulsion via A Supra-amphiphile Fuel and Switch.
    Zhu G; Zhang S; Lu G; Peng B; Lin C; Zhang L; Shi F; Zhang Q; Cheng M
    Angew Chem Int Ed Engl; 2024 Jul; 63(30):e202405287. PubMed ID: 38712847
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Motion modes of two self-propelled camphor boats on the surface of a surfactant-containing solution.
    Karasawa Y; Nomoto T; Chiari L; Toyota T; Fujinami M
    J Colloid Interface Sci; 2018 Feb; 511():184-192. PubMed ID: 29024858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Flow-Driven Self-Propulsion of Oil Droplet on a Surfactant Solution Surface, as Observed by Time-Resolved Interfacial Tension and Surface Flow Speed Measurements.
    Nomoto T; Kimura H; Chiari L; Toyota T; Fujinami M
    Langmuir; 2024 Feb; 40(8):4468-4474. PubMed ID: 38363648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Menthyl acetate powered self-propelled Janus sponge Marangoni motors with self-maintaining surface tension gradients and active mixing.
    Archer RJ; Ebbens SJ; Kubodera Y; Matsuo M; Nomura SM
    J Colloid Interface Sci; 2025 Jan; 678(Pt B):11-19. PubMed ID: 39236350
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-Resolved Measurements of Interfacial Tension and Flow Speed of the Inclined Water Surface around a Self-propelled Camphor Boat by the Quasi-elastic Laser Scattering Method.
    Nomoto T; Marumo M; Chiari L; Toyota T; Fujinami M
    J Phys Chem B; 2023 Mar; 127(12):2863-2871. PubMed ID: 36921258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theoretical model of chirality-induced helical self-propulsion.
    Yamamoto T; Sano M
    Phys Rev E; 2018 Jan; 97(1-1):012607. PubMed ID: 29448380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On-the-Fly Formation of Polymer Film at Water Surface.
    Vespini V; Coppola S; Ferraro P
    Polymers (Basel); 2022 Aug; 14(15):. PubMed ID: 35956741
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental Investigation of the Self-Propelled Motion of a Sodium Oleate Tablet and Boat at an Oil-Water Interface.
    Watahiki Y; Nomoto T; Chiari L; Toyota T; Fujinami M
    Langmuir; 2018 May; 34(19):5487-5494. PubMed ID: 29693399
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simple model for self-propulsion of microdroplets in surfactant solution.
    Ray S; Roy A
    Phys Rev E; 2023 Sep; 108(3-2):035102. PubMed ID: 37849129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Marangoni effect inspired robotic self-propulsion over a water surface using a flow-imbibition-powered microfluidic pump.
    Kwak B; Choi S; Maeng J; Bae J
    Sci Rep; 2021 Sep; 11(1):17469. PubMed ID: 34471178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface-Tension-Driven Flows in a Thin Layer of a Water-n-Heptanol Solution.
    Azouni MA; Normand C; Pétré G
    J Colloid Interface Sci; 2001 Jul; 239(2):509-516. PubMed ID: 11427017
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-propulsion of a calcium alginate surfer.
    Zahorán R; Kumar P; Horváth D; Tóth Á
    Soft Matter; 2023 Oct; 19(41):8033-8039. PubMed ID: 37842822
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Liquid Marbles, Elastic Nonstick Droplets: From Minireactors to Self-Propulsion.
    Bormashenko E
    Langmuir; 2017 Jan; 33(3):663-669. PubMed ID: 28114756
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-Propulsion of Water-Supported Liquid Marbles Filled with Sulfuric Acid.
    Frenkel M; Dombrovsky L; Multanen V; Danchuk V; Legchenkova I; Shoval S; Bormashenko Y; Binks BP; Bormashenko E
    J Phys Chem B; 2018 Aug; 122(32):7936-7942. PubMed ID: 30040411
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Drift instability in the motion of a fluid droplet with a chemically reactive surface driven by Marangoni flow.
    Yoshinaga N; Nagai KH; Sumino Y; Kitahata H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016108. PubMed ID: 23005492
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cherenkov-Like Surface Thermal Waves Emerging from Self-Propulsion of a Liquid Marble.
    Gendelman O; Frenkel M; Binks BP; Bormashenko E
    J Phys Chem B; 2020 Jan; 124(4):695-699. PubMed ID: 31931572
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.